【题目】已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P作DP⊥AP交射线CM于点D,连接AD.
(1)如图1,若BP=4,判断△ADP的形状,并加以证明.
(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.
①依题意补全图2;
②请直接写出线段AC′的长度.
【答案】(1)△ADP是等腰直角三角形.证明见解析;(2)①补图见解析;②
【解析】
(1)先判断出PC=AB,再用同角的余角相等判断出∠APB=∠PDC,得出△ABP≌△PCD(AAS),即可得出结论;
(2)①利用对称的性质画出图形;
②过点C'作C'Q⊥BA交BA的延长线于Q,先求出CP=4,AB=AP,∠CPD=45°,进而得出C'P=CP=4,∠C'PD=∠CPD=45°,再判断出四边形BQC'P是矩形,进而求出AQ=BQ﹣AB=3,最后用勾股定理即可得出结论.
(1)△ADP是等腰直角三角形.证明如下:
∵BC=5,BP=4,∴PC=1.
∵AB=1,∴PC=AB.
∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.
在△ABP和△PCD中,∵,∴△ABP≌△PCD(AAS),∴AP=PD.
∵∠APD=90°,∴△ADP是等腰直角三角形.
(2)①依题意补全图2;
②过点C'作C'Q⊥BA交BA的延长线于Q.
∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.
∵∠ABP=90°,∴∠APB=45°.
∵∠APD=90°,∴∠CPD=45°,连接C'P.
∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′.
科目:初中数学 来源: 题型:
【题目】用1块A型钢板可制成2块C型钢板、1块D型钢板;用1块B型钢板可制成1块C型钢板、2块D型钢板.
(1)现需150块C型钢板、180块D型钢板,则怡好用A型、B型钢板各多少块?
(2)若A、B型钢板共100块,现需C型钢板至多150块,D型钢板不超过170块,共有几种方案?
(3)若需C型钢板80块,D型钢板不多于45块(A型、B型钢板都要使用).求A、B型钢板各需多少块?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,点 P 从 A 点出发沿 A-C-B 路径向终点运动,终点为 B点;点 Q 从 B 点出发沿 B-C-A 路径向终点运动,终点为 A 点,点 P 和 Q 分别以 1cm/s 和 xcm / s 的运动速度 同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过 P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.
(1)如图,当 x 2 时,设点 P 运动时间为 ts ,当点 P 在 AC 上,点 Q 在 BC 上时:
①用含 t 的式子表示 CP 和 CQ,则 CP= cm,CQ= cm;
②当 t 2 时,PEC 与QFC 全等吗?并说明理由;
(2)请问:当 x 3 时,PEC 与QFC 有没有可能全等?若能,直接写出符合条件的 t 的值;若不能,请说明 理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com