7£®¹ú¼ÒΪ֧³Ö´óѧÉú´´Òµ£¬ÌṩС¶îÎÞÏ¢´û¿î£¬Ñ§ÉúÍõ·¼ÏíÊÜÕþ²ßÎÞÏ¢´û¿î36000ÔªÓÃÀ´´úÀíÆ·ÅÆ·þ×°µÄÏúÊÛ£®ÒÑÖª¸ÃÆ·ÅÆ·þ×°½ø¼Ûÿ¼þ40Ôª£¬ÈÕÏúÊÛy£¨¼þ£©ÓëÏúÊÛ¼Ûx £¨Ôª/¼þ£©Ö®¼äµÄ¹ØÏµÈçͼËùʾ£¨ÊµÏߣ©£¬Ã¿Ì츶Ա¹¤µÄ¹¤×ÊÿÈËÿÌì82Ôª£¬Ã¿ÌìÓ¦Ö§¸¶ÆäËü·ÑÓÃ106Ôª£®
£¨1£©ÇóÈÕÏúÊÛy£¨¼þ£©ÓëÏúÊÛ¼Ûx £¨Ôª/¼þ£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÈôÔݲ»¿¼ÂÇ»¹´û£¬µ±Ä³ÌìµÄÏúÊÛ¼ÛΪ48Ôª/¼þʱ£¬ÊÕÖ§Ç¡ºÃƽºâ£¨ÊÕÈë=Ö§³ö£©£¬Çó¸ÃµêÔ±¹¤ÈËÊý£»
£¨3£©Èô¸ÃµêÖ»ÓÐ2ÃûÔ±¹¤£¬Ôò¸ÃµêÖÁÉÙÐèÒª¶àÉÙÌì²ÅÄÜ»¹Çå´û¿î£¬´Ëʱ£¬Ã¿¼þ·þ×°µÄ¼Û¸ñÓ¦¶¨Îª¶àÉÙÔª£¿

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÊÕÈëµÈÓÚÖ§³ö£¬¿ÉµÃÒ»ÔªÒ»´Î·½³Ì£¬¸ù¾Ý½âÒ»ÔªÒ»´Î·½³Ì£¬¿ÉµÃ´ð°¸£»
£¨3£©·ÖÀàÌÖÂÛ40¡Üx¡Ü58£¬»ò58¡Üx¡Ü71£¬ÕÒ³öÁ½ÖÖÇé¿ö϶¨¼ÛΪ¶àÉÙʱ£¬Ã¿ÈÕÊÕÈë×î¸ß£¬ÔÙÓÉ£¨ÊÕÈë-Ö§³ö£©¡ÁÌìÊý¡ÝÕ®Îñ£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©µ±40¡Üx¡Ü58ʱ£¬ÉèyÓëxµÄº¯Êý½âÎöʽΪy=k1x+b1£¬ÓÉͼÏó¿ÉµÃ£º
$\left\{\begin{array}{l}{60=40{k}_{1}+{b}_{1}}\\{24=58{k}_{1}+{b}_{1}}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{1}=-2}\\{{b}_{1}=140}\end{array}\right.$£®
¡ày=-2x+140£»
µÈ58£¼x¡Ü71ʱ£¬ÉèyÓëxµÄº¯Êý½âÎöʽΪy=k2x+b2£¬ÓÉͼÏóµÃ£º
$\left\{\begin{array}{l}{24=58{k}_{2}+{b}_{2}}\\{11=71{k}_{2}+{b}_{2}}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{2}=-1}\\{{b}_{2}=82}\end{array}\right.$£®
¡ày=-x+82£®
×ÛÉÏËùÊö£ºy=$\left\{\begin{array}{l}{-2x+140£¨40¡Üx¡Ü58£©}\\{-x+82£¨58£¼x¡Ü71£©}\end{array}\right.$£®
£¨2£©ÉèÈËÊýΪa£¬µ±x=48ʱ£¬y=-2¡Á48+140=44£¬
Ôò£¨48-40£©¡Á44=106+82a£¬
½âµÃ£ºa=3£®
´ð£º¸ÃµêÔ±¹¤ÈËÊýΪ3£®
£¨3£©ÁîÿÈÕµÄÊÕÈëΪSÔª£¬ÔòÓУº
µ±40¡Üx¡Ü58ʱ£¬S=£¨x-40£©£¨-2x+140£©=-2£¨x-55£©2+450£¬
¹Êµ±x=55ʱ£¬SÈ¡µÃ×î´óÖµ450£»
µ±58£¼x¡Ü71ʱ£¬S=£¨x-40£©£¨-x+82£©=-£¨x-61£©2+441£¬
¹Êµ±x=61ʱ£¬SÈ¡µÃ×î´óÖµ441£®
×ÛÉÏ¿ÉÖª£¬µ±x=55ʱ£¬SÈ¡µÃ×î´óÖµ450£®
ÉèÐèÒªbÌ죬¸Ãµê»¹ÇåËùÓÐÕ®Îñ£¬Ôò£º
£¨450-106-82¡Á2£©b¡Ý36000£¬
½âµÃ£ºb¡Ý200£®
¹Ê¸ÃµêÖÁÉÙÐèÒª200Ìì²ÅÄÜ»¹Çå´û¿î£¬´Ëʱ£¬Ã¿¼þ·þ×°µÄ¼Û¸ñÓ¦¶¨Îª55Ôª£®

µãÆÀ ´ËÌ⿼²éÁ˶þ´Îº¯ÊýµÄÓ¦Óã¬ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬Ò»´Î·½³ÌµÄÓ¦Ó㬲»µÈʽµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊǸù¾ÝͼÏó·ÖÀàÌÖÂÛ£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´óÔËËãÁ¿²»Ð¡£¬¸ÃÌâµÄÄѵãÔÚÓÚ£¨3£©Öм«ÖµµÄÇóÈ¡£¬½áºÏ£¨1£©µÄ¹ØÏµÊ½µÃ³öÿÈÕÊÕÈëµÄ¶þ´Îº¯Êý£¬×ª»¯Îª¶¥µãʽѰÕÒ¼«Öµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º3£¨x2-xy£©-$\frac{1}{2}£¨{4{x^2}-2xy}£©$£¬ÆäÖУ¨x+5£©2+|2y-4|=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½â·½³Ì£º
£¨1£©4-x=3£¨2-x£©
£¨2£©$\frac{2x+1}{3}-\frac{5x-1}{6}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÅ×ÎïÏßC1£ºy=-x2+bx+c¾­¹ý£¨-1£¬-6£©£¬£¨2£¬0£©Á½µã
£¨1£©ÇóÅ×ÎïÏß½âÎöʽ£»
£¨2£©½«Å×ÎïÏßC1ÏòÉÏÆ½ÒÆ6µ¥Î»µÃµ½Å×ÎïÏßC2£¬ÈôÅ×ÎïÏßC2ÓëyÖá½»ÓÚµãB£¬ÓëxÖá½»ÓÚµãC£¬D£¨CÔÚD×ó±ß£©£¬ÇÒµãA£¨m£¬m+1£©ÔÚC2ÉÏ£¬Á¬½ÓBD£¬ÇóµãA¹ØÓÚÖ±ÏßBD¶Ô³ÆµãA¡äµÄ×ø±ê£»
£¨3£©ÔÚÅ×ÎïÏßC2ÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PBDÊÇÒÔBDΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÊÇÖÛɽ-¼ÎÐ˵ĸßËÙ¹«Â·Ê¾Òâͼ£¬ÍõÀÏʦ¼Ý½Î³µ´ÓÖÛɽ³ö·¢£¬ÉϸßËÙ¹«Â·Í¾¾­ÖÛɽ¿çº£´óÇźͺ¼ÖÝÍå¿çº£´óÇŵ½¼ÎÐËϸßËÙ£¬Æä¼äÓÃÁË4.5Сʱ£»·µ»ØÊ±Æ½¾ùËÙ¶ÈÌá¸ßÁË20ǧÃ×/Сʱ£¬±ÈȥʱÉÙÓÃÁË1Сʱ»Øµ½ÖÛɽ£®

£¨1£©ÇóÖÛɽÓë¼ÎÐËÁ½µØ¼äµÄ¸ßËÙ¹«Â·Â·³Ì£»
£¨2£©Á½×ù¿çº£´óÇŵij¤¶È¼°¹ýÇŷѼû±í£º
´óÇÅÃû³ÆÖÛɽ¿çº£´óÇź¼ÖÝÍå¿çº£´óÇÅ
´óÇų¤¶È48ǧÃ×36ǧÃ×
¹ýÇÅ·Ñ100Ôª80Ôª
ÎÒÊ¡½»Í¨²¿ÃŹ涨£º½Î³µµÄ¸ßËÙ¹«Â·Í¨ÐзÑw£¨Ôª£©µÄ¼ÆËã·½·¨Îª£ºw=am+b+5£¬ÆäÖÐaÔª/£¨Ç§Ã×£©Îª¸ßËÙ¹«Â·Àï³Ì·Ñ£¬m£¨Ç§Ã×£©Îª¸ßËÙ¹«Â·Àï³ÌÊý£¨²»°üÀ¨¿çº£´óÇų¤£©£¬b£¨Ôª£©Îª¿çº£´óÇŹýÇÅ·Ñ£®ÈôÍõÀÏʦ´ÓÖÛɽµ½¼ÎÐËËù»¨µÄ¸ßËÙ¹«Â·Í¨ÐзÑΪ277.4Ôª£¬Çó½Î³µµÄ¸ßËÙ¹«Â·Àï³Ì·Ña£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÒÑÖªADÊÇ¡÷ABCµÄÖÐÏߣ¬AM¡ÍAB£¬AM=AB£¬AN¡ÍAC£¬AN=AC£®ÇóÖ¤£ºMN=2AD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®½â·½³Ì£º$\frac{x+1}{x-1}$-$\frac{2}{{x}^{2}-1}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¹Û²ìÏÂÁеÈʽ£º
¢Ù$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}$-1£»
¢Ú$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}$-$\sqrt{2}$£»
¢Û$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\sqrt{4}$-$\sqrt{3}$£»¡­
£¨1£©ÀûÓÃÄã¹Û²ìµ½µÄ¹æÂÉ£¬»¯¼ò£º¢Ù$\frac{1}{\sqrt{23}+\sqrt{22}}$=$\sqrt{23}$-$\sqrt{22}$£»¢Ú$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$£»
£¨2£©¼ÆË㣺$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+2}$+¡­+$\frac{1}{\sqrt{15}+4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¼ÆËãÏÂÁи÷ʽµÄÖµ£º
£¨1£©$\sqrt{0}$$+\root{3}{-27}$$-\sqrt{\frac{1}{4}}$$-\root{3}{-0.125}$$+\sqrt{1-\frac{63}{64}}$£»
£¨2£©£¨2$\sqrt{2}$+$\sqrt{3}$£©-£¨$\sqrt{2}+\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸