精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

【答案】(1);(2)P(;(3)Q(﹣4,1)Q(3,1).

【解析】

试题分析:(1)点A(0,1).B(﹣9,10)在抛物线上,抛物线的解析式为

(2)AC∥x轴,A(0,1)

=1,=6,=0,点C的坐标(﹣6,1),点A(0,1).B(﹣9,10),直线AB的解析式为y=﹣x+1,设点P(m,E(m,﹣m+1)PE=﹣m+1﹣()=AC⊥EP,AC=6,S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)

=AC×PE=×6×(==

﹣6<m<0当m=﹣时,四边形AECP的面积的最大值是,此时点P().

(3)=P(﹣3,﹣2),PF=yF﹣yP=3,CF=xF﹣xC=3,PF=CF,∠PCF=45°

同理可得:∠EAF=45°,∠PCF=∠EAF,在直线AC上存在满足条件的Q,设Q(t,1)且AB=,AC=6,CP=以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,t=﹣4,Q(﹣4,1)

②当△CQP∽△ABC时,t=3,Q(3,1).

综上所述:Q(﹣4,1)Q(3,1)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题. 为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:

(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;
(2)求这天5路公共汽车平均每班的载客量;
(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1∥l2 , l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;

(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;

(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.

(1)求证:BD=CD;

(2)若圆O的半径为3,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.

(1)画出△A1B1C,直接写出点A1、B1的坐标;

(2)求在旋转过程中,△ABC所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为:61053484,这组数据的中位数和极差分别是(  )

A. 47B. 75C. 57D. 37

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学记数法表示为(  )
A.2.78×1010
B.2.78×1011
C.27.8×1010
D.0.278×1011

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.

(1)求证:CD是⊙O的切线;

(2)若⊙O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.

(1)求证:DF⊥AC;

(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).

查看答案和解析>>

同步练习册答案