精英家教网 > 初中数学 > 题目详情

【题目】解下列方程:

1.

2.

【答案】1x=-3;(2)原方程无解.

【解析】

1)方程两边同乘以最简公分母,把分式方程去分母转化为整式方程求解;

2)方程两边同乘以最简公分母,把分式方程去分母转化为整式方程求解;

注意:求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解:(1)去分母,得xx1)﹣4x21

去括号,得x2x4x21

整理,得x+30

所以,x=﹣3

经检验,x=-3是原方式方程的解,

所以原分式方程的解为:x=-3

2)去分母得:(x22﹣(x+2216

整理得:﹣8x16

解得:x=﹣2

x=-2时,x240

所以x=-2不是原方程的解.

所以原方程无解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校七年级1班体育委员统计了全班同学60秒跳绳的次数,并绘制出如下频数分布表和频数分布直方图:

次数

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

频数

a

4

12

16

8

3

结合图表完成下列问题:

(1)a=   

(2)补全频数分布直方图;

(3)写出全班人数是   ,并求出第三组“120≤x<140”的频率(精确到0.01)

(4)若跳绳次数不少于140的学生成绩为优秀,则优秀学生人数占全班总人数的百分之几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,.分别以点为圆心,大于长为半径画弧,两弧交于点,作射线于点,交于点.若点的中点,的周长为8,则的长为(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字”、“”、“”、“的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.

(1)若从中任取一个球,球上的汉字刚好是的概率为__________.

(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成历城的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点MN分别是BDGE的中点,若BC=14CE=2,则MN的长(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.

(1)求A、B两点的坐标及二次函数解析式;

(2)如图2,作直线AD,过点BAD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:

(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDBCB的延长线于G.

(1)求证:四边形AGBD为平行四边形;

(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.

(1)如果上述仰角与俯角分别为30°60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;

(2)如图2,如果上述仰角与俯角分别为αβ,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.

查看答案和解析>>

同步练习册答案