【题目】如图,在⊙O中,AB是⊙O的直径,F是弦AD的中点,连结OF并延长OF交⊙O于点E,连结BE交AD于点G,延长AD至点C,使得GC=BC,连结BC.
(1)求证:BC是⊙O的切线.
(2)⊙O的半径为10,sinA=,求EG的长.
【答案】(1)见解析;(2)2
【解析】
(1)连结OD,求出∠ABE+∠GBC=90°,根据切线的判定得出即可;
(2)解直角三角形求出AF、OF,证明,求出BC和AC,进而求出EF、FG,根据勾股定理可得EG的长.
(1)证明:连结OD,
∵OA=OD,F是弦AD的中点,
∴OF⊥AD,
∴∠EFG=90°,
∴∠E+∠FGE=90°,
∵BC=GC,
∴∠BGC=∠GBC,
∵∠FGE=∠BGC,
∴∠GBC=∠FGE,
∵OE=OB,
∴∠ABE=∠E,
∴∠ABE+∠GBC=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)∵sinA=,OA=10,
∴OF=OA·sinA=6,
∴,
∵∠OAF=∠CAB,∠OFA=∠CBA=90°,
∴,
∴,即,
∴BC=GC=15,
∴AC==25,
∴AG=AC-GC=10,EF=OE-OF=10-6=4,
∴FG=2,
在中,∠EFG=90°,FG=2,EF=4,
∴.
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG.则下列结论:
①∠FCG=∠CDG;
②△CEF的面积等于;
③FC平分∠BFG;
④BE2+DF2=EF2;
其中正确的结论是_____.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,以下四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=a-4ax与x轴交于A,B两点(A在B的左侧).
(1)求点A,B的坐标;
(2)已知点C(2,1),P(1,-a),点Q在直线PC上,且Q点的横坐标为4.
①求Q点的纵坐标(用含a的式子表示);
②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1、图2分别是8×8的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:
(1)在图1中画一个以线段AB为一边的正方形,并求出此正方形的面积;(所画正方形各顶点必须在小正方形的顶点上)
(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形各顶点必须在小正方形的顶点上,且所画等腰三角形的面积为12.
图1 图2 备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
(1)如图1,在Rt△ABC中,∠A=90°,AB=kAC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为 .
类比探究
(2)如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD,请问(1)中BD,EC的数量关系还成立吗?说明理由
拓展延伸:
(3)如图3,在(2)的条件下,将△AED绕点A继续旋转,旋转角为a(a>90°).直线BD,CE交于F点,若AC=1,AB=,则当∠ACE=15°时,BFCF的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com