6£®¶ÔÓÚÉú»îÖеÄһЩʵ¼ÊÎÊÌ⣬ÎÒÃÇҪѧ»á½¨Á¢ÊýѧģÐÍ£¬ÔËÓÃÊýѧ˼ÏëºÍ˼Ïë·½·¨È¥·ÖÎö¡¢È¥Ñо¿£¬´Ó¶øÊ¹ÎÊÌâ»ñµÃ½â¾ö£®ÈçÓÃË®ÇåÏ´Êß²ËÉϲÐÁôµÄũҩ£¬ÉèÓÃx£¨x¡Ý1£©µ¥Î»Á¿µÄË®ÇåÏ´ÒÀ´ÎÒÔºó£¬Êß²ËÉϲÐÁôµÄũҩÁ¿Óë±¾´ÎÇåϴǰ²ÐÁôũҩÁ¿Ö®±ÈΪ$\frac{1}{x+1}$£¬ÏÖÓÐa£¨a¨R2£©µ¥Î»Á¿µÄË®ÇåÏ´Ê߲ˣ¬ÓÐÁ½ÖÖ·½°¸£º·½°¸Ò»¡¢½«aµ¥Î»Á¿µÄˮһ´ÎÇåÏ´£»·½°¸¶þ¡¢°Ñaµ¥Î»Á¿µÄˮƽ¾ù·Ö³ÉÁ½·ÝºóÇåÏ´Á½´Î£®¼ÙÉèÇåϴǰÊß²ËÉϲÐÁôµÄũҩÁ¿Îª1£¬ÎÒÃÇ¿ÉÒÔ½¨Á¢ÏÂÃæ·ÖʽģÐÍ£¬Öð²½½â¾ö£º
£¨1£©ÀûÓ÷½°¸Ò»ÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿M=$\frac{1}{1+a}$£®
£¨2£©Çó³öÀûÓ÷½°¸¶þÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿N£¨Óú¬aµÄ·Öʽ±íʾ£©
£¨3£©ÊÔÎÊÓÃÄÄÖÖ·½°¸ÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿±È½ÏÉÙ£¿ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèÇåϴǰÊß²ËÉϲÐÁôµÄũҩÁ¿Îª1£¬·Ö±ðÓÃaµÄ´úÊýʽ±íʾÊß²ËÉϲÐÁôµÄũҩÁ¿£¬ÓÃaµ¥Î»Á¿µÄË®ÇåÏ´Ò»´Î£¬±íʾ³öÊß²ËÉϲÐÁôµÄũҩÁ¿ÎªM£»
£¨2£©°Ñaµ¥Î»Á¿µÄˮƽ¾ù·Ö³ÉÁ½·ÝºóÇåÏ´Á½´Î£¬±íʾ³öÊß²ËÉϲÐÁôµÄũҩÁ¿N£»
£¨3£©ÀûÓÃ×÷²î·¨±È½ÏMÓëN´óС¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©ÉèÇåϴǰÊß²ËÉϲÐÁôµÄũҩÁ¿Îª1£¬·Ö±ðÓÃaµÄ´úÊýʽ±íʾÊß²ËÉϲÐÁôµÄũҩÁ¿£¬
ÓÃaµ¥Î»Á¿µÄË®ÇåÏ´Ò»´Î£¬Êß²ËÉϲÐÁôµÄũҩÁ¿ÎªM=$\frac{1}{1+a}$£»
¹Ê´ð°¸Îª£º$\frac{1}{1+a}$
£¨2£©°Ñaµ¥Î»Á¿µÄˮƽ¾ù·Ö³ÉÁ½·ÝºóÇåÏ´Á½´Î£¬
Êß²ËÉϲÐÁôµÄũҩÁ¿N=$\frac{1}{1+\frac{a}{2}}$•$\frac{1}{1+\frac{a}{2}}$=$\frac{1}{£¨1+\frac{a}{2}£©^{2}}$£»
£¨3£©¡ß£¨1+a£©-£¨1+$\frac{a}{2}$£©2=1+a-1-a-$\frac{{a}^{2}}{4}$=-$\frac{{a}^{2}}{4}$£¬
¡à1+a£¼£¨1+a£©2£¬
¡àP£¾Q£¬
Ôò·½°¸¶þ£ºÇåÏ´Á½´Î²ÐÁôµÄũҩÁ¿±È½ÏÉÙ£®

µãÆÀ ´ËÌ⿼²éÁË·ÖʽµÄ¼Ó¼õ·¨£¬ÒÔ¼°×÷²î·¨±È½Ï´óС£¬±íʾ³öMÓëNÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÖ±Ïßy=-$\frac{1}{5}$x¹ýµãA£¨5£¬m£©¡¢B£¨n£¬3£©£¬Ôòm-n=14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOACBµÄ¶¥µãOÔÚ×ø±êÔ­µã£¬¶¥µãA¡¢B·Ö±ðÔÚxÖáyÖáµÄÕý°ëÖáÉÏ£¬OA=3£¬OB=4£¬DΪOBµÄÖе㣬µãEΪ±ßOAÉϵÄÒ»¸ö¶¯µã£®
£¨1£©ÇóÏß¶ÎCDËùÔÚÖ±ÏߵĽâÎöʽ£»
£¨2£©µ±¡÷CDEµÄÖܳ¤×îСʱ£¬Çó´ËʱµãEµÄ×ø±ê£»
£¨3£©µ±µãEΪOAÖеãʱ£¬×ø±êÆ½ÃæÄÚ£¬ÊÇ·ñ´æÔÚµãF£¬Ê¹ÒÔD¡¢E¡¢C¡¢FΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öFµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÕýÕûÊý¡¢¸ºÕûÊý¡¢·ÖÊýͳ³ÆÎªÓÐÀíÊýB£®ÕûÊý°üÀ¨ÕýÕûÊý¡¢0¡¢¸ºÕûÊý
C£®½üËÆÊý3.10¾«È·µ½ÁËÊ®·ÖλD£®-24µ×ÊýÊÇ-2£¬Ö¸ÊýÊÇ4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÈçͼËùʾ£¬ÏÂÁнáÂÛ£º¢Ùa£¼0£»¢Ú-$\frac{b}{2a}$=1£»¢Ûb2-4ac£¼0£»¢Üµ±x£¾1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£»¢Ýµ±-1£¼x£¼3ʱ£¬y£¼0£¬ÆäÖÐÕýÈ·µÄÊǢڢݣ®£¨Ö»ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®²»µÈʽ×é$\left\{\begin{array}{l}{x+2m£¾4}\\{2x-n£¼5}\end{array}\right.$µÄ½â¼¯ÊÇ-2£¼x£¼2£¬Ôòm+n=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐ˵·¨ÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®½Çƽ·ÖÏßÉϵĵ㵽½ÇÁ½±ßµÄ¾àÀëÏàµÈ
B£®Ï߶δ¹Ö±Æ½·ÖÏßÉϵĵ㵽ÕâÌõÏß¶ÎÁ½¶ËµãµÄ¾àÀëÏàµÈ
C£®ÔÚÖ±½ÇÈý½ÇÐÎÖУ¬30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë
D£®Æ½·ÖÈý½ÇÐÎÄÚµÄÉäÏß½Ð×öÈý½ÇÐÎµÄ½ÇÆ½·ÖÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©£¨$\frac{1}{8}$-$\frac{5}{12}$£©¡Á24+£¨3-3£©2-£¨-6¡Â2£©3£»
£¨2£©-12-£¨$\frac{1}{2}$-$\frac{1}{3}$£©¡Á$\frac{1}{3}$¡Á[3-£¨-3£©2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x3+x3=2x6B£®x6¡Âx2=x3C£®£¨-3x3£©2=3x6D£®x3•x2=x5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸