精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,ABACDEF分别在三边上,且BECDBDCFGEF的中点.

(1)若∠A=40°,求∠B的度数;

(2)试说明:DG垂直平分EF.

【答案】(1)70°;(2)详见解析.

【解析】

(1)如图,首先证明∠ABC=∠ACB,运用三角形的内角和定理即可得解;

(2)如图,作辅助线;首先证明△BDE≌△CFD,得到DE=DF,运用等腰三角形的性质证明DG⊥EF,即可得证

解:(1)∵AB=AC,

∴∠B=∠C,

∵∠A=40°,

∴∠B==70°;

(2)如图连接DE,DF,

△BDE△CFD中,

∴△BDE≌△CFD(SAS),

∴DE=DF(三角形全等其对应边相等),

∵GEF的中点

∴DG⊥EF,

∴DG垂直平分EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.
小明做了如下操作:
将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:

(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;
(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.

(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1RtABC中,∠ABC=90°BCAB2BC.在AB边上取一点M,使AM=BC,过点AAEABAE=BM,连接EC,再过点AANEC,交直线CMCB于点FN

1)证明:∠AFM=45°

2)若将题中的条件“BCAB2BC”改为“AB2BC”,其他条件不变,请你在图2的位置上画出图形,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,请猜想∠AFM的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A,B,与y轴交于点C.

(1)求△ABC的面积.
(2)点M在OB边上以每秒1个单位的速度从点O向点B运动,点N在BC边上以每秒 个单位得速度从点B向点C运动,两个点同时开始运动,同时停止.设运动的时间为t秒,试求当t为何值时,以B,M,N为顶点的三角形与△BOC相似?
(3)如图②,点P为抛物线上的动点,点Q为对称轴上的动点,是否存在点P,Q,使得以P,Q,C,B为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小鹏和小娟玩一种游戏:小鹏手里有三张扑克牌分别是3、4、5,小娟有两张扑克牌6、7,现二人各自把自己的牌洗匀,小鹏从小娟的牌中任意抽取一张,小娟从小鹏的牌中任意抽取一张,计算两张数字之和,如果和为奇数,则小鹏胜;如果和为偶数则小娟胜.
(1)用列表或画树状图的方法,列出小鹏和小娟抽得的数字之和所有可能出现的情况;
(2)请判断该游戏对双方是否公平?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了应对金融危机,节俭开支,我区某康庄工程指挥部,要对某路段建设工程进行招标,从甲、乙两个工程队的投标书中得知:每天需支付甲队的工程款1.5万元,乙队的工程款1.1万元.甲、乙两个工程队实际施工方案如下

1)甲队单独完成这项工程刚好能够如期完成;

2)乙队单独完成这项工程要比规定的时间多用10天;

3)若甲、乙两队合作8天,余下的由乙队单独做也正好如期完成.

试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=4,E为BC的中点,F为AE的中点,过点F作GH⊥AE,分别交AB和CD于G,H,求GF的长,并求 的值.

查看答案和解析>>

同步练习册答案