【题目】如图,在平行四边形中,是等边三角形,,且两个顶点、分别在轴,轴上滑动,连接,则的最小值是______.
【答案】1010.
【解析】
由条件可先证得△CBD是等边三角形,过点C作CE⊥BD于点E,当点C,O,E在一条直线上,此时CO最短,可求得OE和CE的长,进而得出OC的最小值.
如图所示:过点C作CE⊥BD于点E,
∵是等边三角形,
∴AB=BD=AD=20,∠BAD=60°,
∵平行四边形ABCD中,AB=CD,BC=AD,∠BAD=∠BCD=60°,
∴CD=BC=BD=20,
∴△CBD是等边三角形,∠CBD=60°,
∵CE⊥BD,△CBD是等边三角形,
∴E为BD中点,
∵∠DOB=90°,E为BD中点,
∴,
当点C,O,E在一条直线上,此时OC最短,
故CO的最小值为:CO=CEEO= CB·sin∠CBE-10=CB·sin60°-10=1010,
故答案为:1010.
科目:初中数学 来源: 题型:
【题目】如图,以AB为斜边的Rt△ABC的每条边为边作三个正方形,分别是正方形ABMN,正方形BCPQ,正方形ACEF,且边EF恰好经过点N.若S3=S4=5,则S1+S5=_____.(注:图中所示面积S表示相应封闭区域的面积,如S3表示△ABC的面积)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把能被13整除的数称为“自觉数”,已知一个整数,把其个位数字去掉,再从余下的数中加上个位数的4倍如果和是13的倍数,则原数为“自觉数”,如果数字仍然太大不能直接观察出来就重复此过程.如416:41+4×6=65,65÷13=5,所以416是自觉数;又如25281:2528+4×1=2532,253+4×2=261,26+4×1=30,因为30不能被13整除,所以25281不是“自觉数”.
(1)判断27365是否为自觉数 (填“是”或者“否”).
(2)一个四位数n=,规定F(n)=|a+d﹣b×c|,如:F(2019)=|2+9﹣0×1|=11,若四位数n能被65整除,且该四位数的千位数字和十位数字相同,其中1≤a≤4.求出所有满足条件的四位数n中,F(n)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知正方形的边长为1,点在边上,若,且交正方形外角的平分线于点.
(1)如图1,若点是边的中点,是边的中点,连接,求证:.
(2)如图2,若点在线段上滑动(不与点,重合).
①在点滑动过程中,是否一定成立?请说明理由;
②在如图所示的直角坐标系中,当点滑动到某处时,点恰好落在直线上,求此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,点,,分别为,,的中点.现从点观察线段,当长度为的线段(图中的黑粗线)以每秒个单位长的速度沿线段从左向右运动时,将阻挡部分观察视线,在区域内形成盲区.设的左端点从点开始,运动时间为秒.设区域内的盲区面积为(平方单位).
求与之间的函数关系式;
请简单概括随的变化而变化的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有( )
A. 4对B. 3对C. 2对D. 5对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com