【题目】模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.
(1)求证:△BEC≌△CDA;
(2)模型应用:
①已知直线l1:y=-x-4与y轴交于A点,将直线l1绕着A点逆时针旋转45°至l2,如图2,求l2的函数解析式;
②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,-6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第四象限,且是直线y=-2x+6上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.
【答案】(1)证明见解析;(2)①y=x-4,②(4,-2),(),().
【解析】
试题分析:(1)由AAS定理可证△ACD≌△CBE;(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,则△ABC为等腰Rt△,由(1)可知△CBD≌△BAO,由全等三角形的性质得出C点坐标,利用待定系数法求出直线l2的函数解析式即可;(3)当点D为直角顶点,分点D在矩形AOCB的内部与外部两种情况;点P为直角顶点,显然此时点D位于矩形AOCB的外部,由此可得出结论.
试题解析:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°-90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△EBC(AAS).(2)解:如图1,过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,∵∠BAC=45°,∴△ABC为等腰Rt△,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=-x-4,∴A(0,-4),B(-3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(-7,-3),设l2的解析式为y=kx+b(k≠0),∴∴ .
∴l2的解析式:y=-x-4.
(3)当点D位于直线y=2x-6上时,分两种情况:如图2,①点D为直角顶点,分两种情况:当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x-6);则OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;则△ADE≌△DPF,得DF=AE,即:12-2x=8-x,x=4;∴D(4,2);
当点D在矩形AOCB的外部时,设D(x,2x-6);则OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;
同1可知:△ADE≌△DPF,∴AE=DF,即:2x-12=8-x, x=,∴D()
②点P为直角顶点,显然此时点D位于矩形AOCB的外部;设点D(x,2x-6),则CF=2x-6,BF=2x-6-6=2x-12;
同(1)可得,△APB≌△BDF,∴AB=PF=8,PB=DF=x-8;∴BF=PF-PB=8-(x-8)=16-x;联立两个表示BF的式子可得:2x-12=16-x,即x=,∴D().
综上所述,点D坐标为(4,-2)或()或().
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 斜边相等的两个直角三角形全等 B. 腰相等的两个等腰三角形全等
C. 有一边相等的等腰直角三角形全等 D. 有一边相等的两个等边三角形全等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 旋转一定会改变图形的形状和大小
B. 两条直线被第三条直线所截,同位角相等
C. 在同一平面内,过一点有且只有一条直线与已知直线垂直
D. 相等的角是对顶角
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:
(1)点B'的坐标: .
(2)直线AM所对应的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com