精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.
(1)求∠AOB的度数;
(2)当⊙O的半径为2cm,求CD的长.

【答案】
(1)解:∵AM为圆O的切线,

∴OA⊥AM,

∵BD⊥AM,

∴∠OAD=∠BDM=90°,

∴OA∥BD,

∴∠AOC=∠OCB,

∵OB=OC,

∴∠OBC=∠OCB,

∵OC平分∠AOB,

∴∠AOC=∠BOC,

∴∠BOC=∠OCB=∠OBC=60°,

∴∠AOB=120°


(2)解:过点O作OE⊥BD于点E,

∵∠BOC=∠OCB=∠OBC=60°,

∴△OBC是等边三角形,

∴BE=EC=1,

∵∠OED=∠EDA=∠OAD=90°,

∴四边形OADE是矩形,

∴DE=OA=2,

∴EC=DC=1.


【解析】(1)由AM为圆O的切线,利用切线的性质得到OA与AM垂直,再由BD与AM垂直,得到OA与BD平行,利用两直线平行内错角相等得到一对角相等,再由OC为角平分线得到一对角相等,以及OB=OC,利用等边对等角得到一对角相等,等量代换得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;(2)过点O作OE⊥BD于点E,进而得出四边形OADE是矩形,得出DC的长即可.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y= x﹣b与y= x﹣1的图象之间的距离等于3,则b的值为(
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.
(1)求证:AD∥BC;
(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,则该圆锥的底面周长是(
A.3πcm
B.4πcm
C.5πcm
D.6πcm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是(
A. cm
B.5cm
C.6cm
D.10cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O
(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,点M为抛物线y=﹣x2+2nx﹣n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.

(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线y=﹣x2+2nx﹣n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
写出C点的坐标:C()(坐标用含有t的代数式表示);
(4)若点C在题(2)中旋转后的新抛物线上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是

查看答案和解析>>

同步练习册答案