精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC,A=36°,BD平分∠ABC,DEBC,那么在下列三角形中,与EBD相似的三角形是(  )

A.

B.

C.

D.

【答案】C

【解析】

由于∠A=36°,AB=AC,易求∠ABC=C=72°,而BD是角平分线,易求∠ABD=CBD=36°,又DEBC,那么有∠EDB=CBD=36°,即∠A=BDE,ABD=DBE,从而可证ABD∽△DBE.

∵∠A=36°,AB=AC,

∴∠ABC=C=72°,

又∵BD是∠ABC的平分线,

∴∠ABD=CBD=36°,

DEBC,

∴∠EDB=CBD=36°,

即∠A=BDE,ABD=DBE,

∴△ABD∽△DBE,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点Ax轴上,点B在直线x=3上,直线x=3x轴交于点C

(1)求抛物线的解析式;

(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.

①当t为何值时,矩形PQNM的面积最小?并求出最小面积;

②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是(  )

A. 位似中心是点B,相似比是2:1 B. 位似中心是点D,相似比是2:1

C. 位似中心在点G,H之间,相似比为2:1 D. 位似中心在点G,H之间,相似比为1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下框中是小明对一道题目的解答以及老师的批改.

题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?

解:设矩形蔬菜种植区域的宽为x_m,则长为2xm,

根据题意,得x·2x=288.

解这个方程,得x1=-12(不合题意,舍去),x2=12,

所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)

答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.

我的结果也正确!

小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.

结果为何正确呢?

(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?

(2)如图,矩形ABCD在矩形ABCD的内部,ABAB′,ADAD,且ADAB=2∶1,设ABAB′、BCBC′、CDCD′、DADA之间的距离分别为abcd,要使矩形ABCD′∽矩形ABCDabcd应满足什么条件?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EAB上一点,连接DE.过点AAFDE,垂足为F,⊙O经过点CDF,与AD相交于点G

(1)求证:△AFG∽△DFC

(2)若正方形ABCD的边长为4,AE=1,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CD在线段AB上,PCD是等边三角形,且ACP∽△PDB

(1)求APB的大小.

(2)说明线段ACCDBD之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD0.8 m,窗高CD1.2 m,并测得OE0.8 mOF3 m,求围墙AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某公园内有座桥,桥的高度是5米,CBDB,坡面AC的倾斜角为45°,为方便老人过桥,市政部门决定降低坡度,使新坡面DC的坡度为i= :3.若新坡角外需留下2米宽的人行道,问离原坡角(A点处)6米的一棵树是否需要移栽?(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=2(x-2)2与平行于x轴的直线交于点AB,抛物线顶点为C,△ABC为等边三角形,求SABC.

查看答案和解析>>

同步练习册答案