精英家教网 > 初中数学 > 题目详情

【题目】一个多边形的内角是1440°,求这个多边形的多数是( )
A.7
B.8
C.9
D.10

【答案】D
【解析】设这个多边形的多数是n,根据多边形的内角和定理即可列方程求解。
设这个多边形的多数是n,由题意得
180°(n-2)=1440°,解得n=10
故选D.
【考点精析】本题主要考查了多边形内角与外角的相关知识点,需要掌握多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列式子正确的是(
A.x﹣(y﹣z)=x﹣y﹣z
B.﹣(x﹣y+z)=﹣x﹣y﹣z
C.x+2y﹣2z=x﹣2(z+y)
D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:

月用水量(吨)

4

5

6

8

9

户数

2

5

4

3

1

则这15户家庭的月用水量的众数与中位数分别为(
A.9、6
B.6、6
C.5、6
D.5、5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点E、D分别从A、C出发,沿AC,CB方向以相同的速度在线段AC,CB上运动,AD、BE相交于F点.

(1)求证:△ABE≌△CAD;
(2)当E、D运动时,∠BFD大小是否发生改变?若不变求其大小,若改变求其变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6
求BC的长.
小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).
请回答:

(1)△BDE是
(2)BC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°,AC=1,点D为AC上一动点,连接BD,以BD为边作等边△BDE,设CD=n.

(1)当n=1时,EA的延长线交BC的延长线于F,则AF=
(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH.
①设∠CBD=x,用含x的式子表示∠ADE和∠ABE.
②求证:△AEH为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第一象限,AD平行于轴,且AB=2AD=4,点A的坐标为(26).

1)直接写出BCD三点的坐标.

2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB等于30°,角内有一点P,OP=6,点M在OA上,点N在OB上,△PMN周长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作:

如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.

探究:

在点E的运动过程中:

(1)猜想线段OE与OG的数量关系?并证明你的结论;

(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.

应用:

(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;

(4)当a的值不确定时:

①若=时,试求的值;

②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.

查看答案和解析>>

同步练习册答案