精英家教网 > 初中数学 > 题目详情

【题目】已知:RtA′BC′RtABC,A′C′B=ACB=90°,A′BC′=ABC=60°,RtA′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.

(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;

(2)将RtA′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)将RtA′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.

【答案】(1)AD=A′D(2)仍然成立:AD=A′D(3)60°

【解析】

试题分析:(1)易证BCCBAA都是等边三角形,从而可以求出ACD=BAD=60°DCA=DAC=30°,进而可以证到AD=DC=AD.

(2)解答中提供了两种方法,分别利用相似与全等,证明所得的结论.

(3)当A、C、A三点在一条直线上时,有ACB=90°,易证RtACBRtACB (HL),从而可以求出旋转角α的度数.

试题解析:答:(1)AD=A′D.

证明:如图1,

RtABC′≌RtABC,

BC=BC,BA=BA

∵∠ABC=ABC=60°

∴△BCCBAA都是等边三角形.

∴∠BAA=BCC=60°

∵∠A′C′B=90°,

∴∠DC′A′=30°.

∵∠AC′D=BC′C=60°,

∴∠ADC′=60°.

∴∠DA′C′=30°.

∴∠DAC′=DC′A,DC′A′=DA′C′.

AD=DC′,DC′=DA′.

AD=A′D.

(2)仍然成立:AD=A′D.

证法一:利用相似.如图2﹣1.

由旋转可得,BA=BA′,BC=BC′,CBC′=ABA′

∵∠1=(180°﹣ABA′),3=(180°﹣CBC′)

∴∠1=3.

设AB、CD交于点O,则AOD=BOC

∴△BOC∽△DOA.

∴∠2=4,

连接BD,

∵∠BOD=COA,

∴△BOD∽△COA.

∴∠5=6.

∵∠ACB=90°,

∴∠2+5=90°.

∴∠4+6=90°,即ADB=90°.

BA=BA′,ADB=90°,

AD=A′D.

证法二:利用全等.如图2﹣2.

过点A作AEA′C′,交CD的延长线于点E,则1=2,E=3.

由旋转可得,AC=A′C′,BC=BC′,

∴∠4=5.

∵∠ACB=A′C′B=90°,

∴∠5+6=3+4=90°,

∴∠3=6.

∴∠E=6,AE=AC=AC

ADE与ADC中,

∴△ADE≌△ADC(ASA),

AD=A′D.

(3)当A、C′、A′三点在一条直线上时,如图3,

则有ACB=180°﹣∠ACB=90°

在RtACB和RtACB中,

RtACBRtACB (HL).

∴∠ABC=ABC=60°

当A、C′、A′三点在一条直线上时,旋转角α的度数为60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l和双曲线y=(k>0)交于AB两点,P是线段AB上的点(不与AB重合),过点ABP分别向x轴作垂线,垂足分别为CDE,连接OAOBOP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( )

A.S1S2S3B.S1S2S3C.S1S2S3D.S1S2S3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别相交于点A和B.

(1)直接写出坐标:点A ,点B

2以线段AB为一边在第一象限内作ABCD,其顶点D( )在双曲线 ()上.

①求证:四边形ABCD是正方形;

②试探索:将正方形ABCD沿轴向左平移多少个单位长度时,点C恰好落在双曲线 ()上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在以AB为直径的半圆上,AB=8∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:

①CE=CF

线段EF的最小值为

AD=2时,EF与半圆相切;

若点F恰好落在B C上,则AD=

当点D从点A运动到点B时,线段EF扫过的面积是

其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.

(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.

(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.

(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学在实施快乐大课间之前组织过我最喜欢的球类的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.

(1)求出被调查的学生人数;

(2)把折线统计图补充完整;

(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用手心、手背的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数a,b,c在数轴上的位置如图所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”从大到小把a,b,﹣b,c连接起来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面为某年11月的日历:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

(1)在日历上任意圈出一个竖列上相邻的3个数;

设中间的一个数为,则另外的两个数为

若已知这三个数的和为42,则这三天都在星期

(2)在日历上用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为b,若这9个数的和为153,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

【答案】(1)y=-x2x+8(2)

【解析】试题分析:(1)求出一元二次方程的两根即可求出两点坐标,把BC两点坐标代入二次函数的解析式就可解答;

(2)过点FFGAB,垂足为G,由EFAC,得BEF∽△BAC,利用相似比求EF利用sin∠FEG=sin∠CABFG,根据S=SBCE-SBFE,求Sm之间的函数关系式.

解:(1)解方程x2-10x+16=0得x12x28

∴B20)、C08

∴所求二次函数的表达式为y=-x2x8

(2)∵AB=8,OC=8,依题意,AE=m,则BE=8-m,

∵OA6OC8∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

过点F作FG⊥AB,垂足为G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

点睛:本题考查了一元二次方程的解法,待定系数法求函数关系系,相似三角形的判定与性质,span>锐角三角函数的定义,割补法求图形的面积,熟练掌握待定系数法求二次函数关系式、相似三角形的判定与性质是解答本题的关键.

型】解答
束】
23

【题目】如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).RtCDE中,CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.RtCDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:

(1)如图(2),当RtCDE运动到点D与点O重合时,设CE交AB于点M,求BME的度数.

(2)如图(3),在RtCDE的运动过程中,当CE经过点B时,求BC的长.

(3)在RtCDE的运动过程中,设AC=h,OAB与CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

查看答案和解析>>

同步练习册答案