精英家教网 > 初中数学 > 题目详情

【题目】在ABCD中,点E、F分别在AB、CD上,且AE=CF.

(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD=BC,∠A=∠C,

∵在△ADE和△CBF中,

∴△ADE≌△CBF(SAS);


(2)证明:∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD,

∵AE=CF,

∴DF=EB,

∴四边形DEBF是平行四边形,

又∵DF=FB,

∴四边形DEBF为菱形.


【解析】(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)用配方法解一元二次方程:x2﹣6x+4=0.
(2)已知关于x的一元二次方程x2﹣4x+m=0的根的判别式的值为4,求m值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宁波轨道交通4号线已开工建设,计划2020年通车试运营.为了了解镇民对4号线地铁票的定价意向,某镇某校数学兴趣小组开展了“你认为宁波4号地铁起步价定为多少合适”的问卷调查,并将调查结果整理后制成了如下统计图,根据图中所给出的信息解答下列问题:

(1)求本次调查中该兴趣小组随机调查的人数;
(2)请你把条形统计图补充完整;
(3)如果在该镇随机咨询一位居民,那么该居民支持“起步价为2元或3元”的概率是
(4)假设该镇有3万人,请估计该镇支持“起步价为3元”的居民大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,直线y= x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣ ,且经过A,C两点,与x轴的另一个交点为点B.

(1)求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求四边形PAOC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△AOC相似?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O在∠APB的平分线上,⊙O与PA相切于点C.

(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】广安某网站调查,2016年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若广安市约有900万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(Ⅱ)如图②,若∠CAB=60°,求BD的长.

查看答案和解析>>

同步练习册答案