【题目】如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为 .
【答案】 -1
【解析】解:如图所示:过点M作MF⊥DC于点F,
∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
∴2MD=AD=CD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD= MD= ,
∴FM=DM×cos30°= ,
∴MC= = ,
∴EC=MC﹣ME= ﹣1.
故答案为: ﹣1.
过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次向右跳动5个单位至点A4(3,2),………,依此规律跳动下去,点A第100次跳动至点A100的坐标是________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用10000元购进A,B两种新式服装,按标价售出后可获得毛利润5400元(毛利润=售价﹣进价),这两种服装的进价、标价如表所示:
类型、价格 | A型 | B型 |
进价(元/件) | 80 | 100 |
标价(元/件) | 120 | 160 |
(1)这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,要使这批服装全部售出后毛利润不低于2000元,则B种服装至多按标价的几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是 ;若如图中的阴影部分剪下来,重新拼叠成如图的一个矩形,则它长为 ;宽为 ;面积为 .
(2)由(1)可以得到一个公式: .
(3)利用你得到的公式计算:20192﹣2018×2020.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC= +1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一条直线上依次有A、B、C三点.
(1)若BC=60,AC=3AB,求AB的长;
(2)若点D是射线CB上一点,点M为BD的中点,点N为CD的中点,求的值;
(3)当点P在线段BC的延长线上运动时,点E是AP中点,点F是BC中点,下列结论中:
①是定值;
②是定值.其中只有一个结论是正确的,请选择正确结论并求出其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
①将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;
②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
③直接写出点B2 , C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA为⊙O的切线,A为切点,直线PO交⊙O于点E,F过点A作PO的垂线AB垂足为D,交⊙O于点B,延长BO与⊙O交与点C,连接AC,BF.
(1)求证:PB与⊙O相切;
(2)是探究线段EF,OD,OP之间的数量关系,并加以证明;
(3)若tan∠F= ,求cos∠ACB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com