精英家教网 > 初中数学 > 题目详情

【题目】某体育看台侧面的示意图如图所示,观众区AC的坡度i12,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α18°30′,竖直的立杆上CD两点间的距离为4mE处到观众区底端A处的水平距离AF3m

求:(1)观众区的水平宽度AB

2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32tanl8°30′≈0.33,结果精确到0.1m

【答案】120m;(221.6m

【解析】

1)根据坡度的概念计算;

2)作CMEFMDNEFN,根据正切的定义求出EN,结合图形计算即可.

1)∵观众区AC的坡度i12,顶端C离水平地面AB的高度为10m

AB2BC20m),

答:观众区的水平宽度AB20m.

2)作CMEFMDNEFN

则四边形MFBCMCDN为矩形,

MFBC10MNCD4DNMCBF23

RtEND中,tanEDN

ENDNtanEDN≈7.59.

EFEN+MN+MF7.59+4+10≈21.6m),

答:顶棚的E处离地面的高度EF约为21.6m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数yx2的图象经过(ab),(a+1b+k)两点,并且与反比例函数的图象交于第一象限内一点A

1)求反比例函数的解析式;

2)请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识

的普及情况,随机调查了部分学生,调查结果分为非常了解”“了解”“了解较少”“不了解四类,

并将检查结果绘制成下面两个统计图.

(1)本次调查的学生共有__________人,估计该校1200 名学生中不了解的人数是__________人.

(2)非常了解的4 人有两名男生, 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°sinABC8,点DAB的中点,过点BCD的垂线,垂足为点E.

(1)求线段CD的长;

(2)cosABE的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.

(1)求k的取值范围;

(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一个相同的根,求此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°AC=BC,斜边AB=4OAB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF 经过点C,则图中阴影部分的面积为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边ABC边长为2DBC中点,连接AD.O在线段AD上运动(不含端点AD),以点O为圆心,长为半径作圆,当OABC的边有且只有两个公共点时,DO的取值范围为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BEO的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.

(1)若∠ADE=25°,求∠C的度数;

(2)若AB=AC,CE=2,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴相较于A.B两点,与y轴相交于点C0-3),抛物线的对称轴为直线x=1.

1)求二次函数的解析式;

2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由;

3)若点Mx轴上,点P在抛物线上,是否存在以点AEMP为顶点且以AE为一边的平行四边形?若存在,请求出所有满足要求的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案