【题目】某班准备选一名学生参加数学史知识竞赛,现统计了两名选手本学期的五次测试 成绩:甲:83,80,90,87, 85; 乙:78,92,82,89,84.
(1)请根据上面的数据完成下表:
极差 | 平均数 | 方差 | |
甲 | 10 | ________ | ________ |
乙 | _________ | 85 | 24.8 |
(2)请你推选出一名参赛选手,并用所学的统计知识说明理由.
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线交x轴于A(-2,0),B(3,0)两点,交y轴于点C(0,6).
(1)写出a,b,c的值;
(2)连接BC,点P为第一象限抛物线上一点,过点A作AD⊥x轴,过点P作PD⊥BC于交直线AD于点D,设点P的横坐标为t,AD长为h.
①求h与t的函数关系式和h的最大值(请求出自变量t的取值范围);
②过第二象限点D作DE∥AB交BC于点E,若DP=CE,时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:
(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;
(2)将折线统计图补充完整;
(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,sinA=,BC=8,点D是AB的中点,过点B作CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点.
(1)若点A的坐标为(﹣4,0),求点B的坐标.
(2)若已知a=1,点A的坐标为(﹣3,0),C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一种成本为20元的商品,经调研,当该商品每件售价为30元时,每天可销售200件:当每件的售价每增加1元,每天的销量将减少5件.
求销量件与售价元之间的函数表达式;
如果每天的销量不低于150件,那么,当售价为多少元时,每天获取的利润最大,最大利润是多少?
该商店老板热心公益事业,决定从每天的销售利润中捐出100元给希望工程,为保证捐款后每天剩余利润不低于2900元,请直接写出该商品售价的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.
概念理解:在“矩形、菱形和正方形”这三种特殊四边形中,不一定是“等邻角四边形”的是______.
问题探究:如图,在等邻角四边形ABCD中,∠B=∠C,AB=3,BC=9,P为线段BC上一动点(不包含端点B,C),Q为直线CD上一动点,连结PA,PQ,在P,Q的运动过程中始终满足∠APQ=∠B,当CQ达到最大时,试求此时BP的长.
应用拓展:在以60°为等角的等邻角四边形ABCD中,∠D=90°,若AB=3,AD=,试求等邻角四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D
(1)求证:PC是⊙O的切线;
(2)求证:;
(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=,CF=5,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com