【题目】某校七年级学生在农场进行社会实践劳动时,采摘了黄瓜和茄子共千克,了解到采摘的这部分黄瓜和茄子的种植成本共元,还了解到如下信息:黄瓜的种植成本是元/千克,售价是元/千克;茄子的种植成本是元/千克,售价是元/千克.
(1)求采摘的黄瓜和茄子各多少千克?
(2)这些采摘的黄瓜和茄子全部卖出可赚多少元?
科目:初中数学 来源: 题型:
【题目】(背景知识)数轴上两点表示的数分别为,则两点之间的距离,线段的中点表示的数为.
(问题情境)已知数轴上有两点,点表示的数分别为和40,点以每秒2个单位长度的速度沿数轴向右匀速运动,点以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为秒.
(1)运动开始前,两点之间的距离为___________,线段的中点所表示的数为__________;
(2)它们按上述方式运动,两点经过多少秒会相遇?相遇点所表示的数是多少?
(3)当为多少秒时,线段的中点表示的数为8?
(情景扩展)已知数轴上有两点,点表示的数分别为和40,若在点之间有一点,点所表示的数为5,点开始在数轴上运动,若点以每秒1个单位长度的速度向左匀速运动,同时,点和点分别以每秒5个单位长度和2个单位长度的速度向右运动.
(4)请问:的值是否随着运动时间的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了一些学生进行调查统计(要求每名同学选出并且只能选出一个自己喜欢的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):
根据统计图提供的信息,回答下列问题:
(1)这次调查的学生人数为 人,图2中,n= ;
(2)扇形统计图中,喜爱《中国诗词大会》节目所对应扇形的圆心角是 度;
(3)补全图1中的条形统计图;
(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生喜爱《最强大脑》节目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为,以线段OA为边作等边三角形,使点B落在第四象限内,点C为x正半轴上一动点,连接BC,以线段BC为边作等边三角形,使点D落在第四象限内.
(1)如图1,在点C运动的过程巾,连接AD.
①和全等吗?请说明理由:
②延长DA交y轴于点E,若,求点C的坐标:
(2)如图2,已知,当点C从点O运动到点M时,点D所走过的路径的长度为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.
填空:① ∠AEB的度数为_______;②线段AD、BE之间的数量关系是______.
(2)拓展研究:
如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.
(3)探究发现:
图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线经过,,三点.
求抛物线的解析式;
若点M为第三象限内抛物线上一动点,点M的横坐标为m,的面积为S.求S关于m的函数关系式,并求出S的最大值.
若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:若关于的一元一次方程的解为,则称该方程为“和解方程”.例如:方程 的解为,而, 则方程为“和解方程".请根据上述规定解答下列问题:(1)已知关于的一元一次方程是“和解方程”,则的值为________.(2)己知关于的一元一次方程是“和解方程”,并且它的解是,则的值为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com