精英家教网 > 初中数学 > 题目详情

如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.

(1)求抛物线的解析式;

(2)判断直线l与⊙E的位置关系,并说明理由;

(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.


【考点】二次函数综合题.

【专题】压轴题.

【分析】(1)连接AE,由已知得:AE=CE=5,OE=3,利用勾股定理求出OA的长,结合垂径定理求出OC的长,从而得到C点坐标,进而得到抛物线的解析式;

(2)求出点D的坐标为(﹣,0),根据△AOE∽△DOA,求出∠DAE=90°,判断出直线l与⊙E相切与A.

(3)过点P作直线l的垂线段PQ,垂足为Q,过点P作直线PM垂直于x轴,交直线l于点M.设M(m, m+4),P(m,﹣ m2+m﹣4),得到PM=m+4﹣(﹣m2+m﹣4)=m2m+8=(m﹣2)2+,根据△PQM的三个内角固定不变,得到PQ最小=PM最小•sin∠QMP=PM最小•sin∠AEO=×=,从而得到最小距离.

【解答】解:(1)如图1,连接AE,由已知得:AE=CE=5,OE=3,

在Rt△AOE中,由勾股定理得,OA===4,

∵OC⊥AB,

∴由垂径定理得,OB=OA=4,

OC=OE+CE=3+5=8,

∴A(0,4),B(0,﹣4),C(8,0),

∵抛物线的顶点为C,

∴设抛物线的解析式为y=a(x﹣8)2

将点B的坐标代入上解析的式,得64a=﹣4,故a=﹣

∴y=﹣(x﹣8)2

∴y=﹣x2+x﹣4为所求抛物线的解析式,

(2)在直线l的解析式y=x+4中,令y=0,得x+4=0,解得x=﹣

∴点D的坐标为(﹣,0),

当x=0时,y=4,

∴点A在直线l上,

在Rt△AOE和Rt△DOA中,

= =

=

∵∠AOE=∠DOA=90°,

∴△AOE∽△DOA,

∴∠AEO=∠DAO,

∵∠AEO+∠EAO=90°,

∴∠DAO+∠EAO=90°,即∠DAE=90°,因此,直线l与⊙E相切与A.

(3)如图2,过点P作直线l的垂线段PQ,垂足为Q,过点P作直线PM垂直于x轴,交直线l于点M.

设M(m, m+4),P(m,﹣ m2+m﹣4),则

PM=m+4﹣(﹣m2+m﹣4)=m2m+8=(m﹣2)2+

当m=2时,PM取得最小值

此时,P(2,﹣),

对于△PQM,

∵PM⊥x轴,

∴∠QMP=∠DAO=∠AEO,

又∠PQM=90°,

∴△PQM的三个内角固定不变,

∴在动点P运动的过程中,△PQM的三边的比例关系不变,

∴当PM取得最小值时,PQ也取得最小值,

PQ最小=PM最小•sin∠QMP=PM最小•sin∠AEO=×=

∴当抛物线上的动点P的坐标为(2,﹣)时,点P到直线l的距离最小,其最小距离为

【点评】本题考查了二次函数综合题,涉及勾股定理、待定系数法求二次函数解析式、切线的判定和性质、二次函数的最值等知识,在解答(3)时要注意点P、点M坐标的设法,以便利用二次函数的最值求解.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是  

查看答案和解析>>

科目:初中数学 来源: 题型:


一组数据:0,1,2,3,3,5,5,10的中位数是(  )

A.2.5    B.3       C.3.5    D.5

查看答案和解析>>

科目:初中数学 来源: 题型:


在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在  区域的可能性最大(填A或B或C).

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是(  )

A.仅有甲和乙相同     B.仅有甲和丙相同

C.仅有乙和丙相同     D.甲、乙、丙都相同

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;

(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;

(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如果单项式5mxay与﹣5nx2a3y是关于x、y的单项式,且它们是同类项.求

(1)(7a﹣22)2013的值;

(2)若5mxay﹣5nx2a3y=0,且xy≠0,求(5m﹣5n)2014的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


2015年十一国庆长假提前到9月29日,黄金周期间外出旅游更为火爆,若旅游区的门票为60元/张,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是9月30日对进入旅游区人数的7次抽样统计数据:

记数的次数

第1次

第2次

第3次

第4次

第5次

第6次

第7次

每小时进入旅游区的人数

318

310

310

286

280

312

284

那么从9月29日至10月5日旅游区门票收入是多少?(  )

A.900000元 B.129600元 C.191600元 D.162000元

查看答案和解析>>

科目:初中数学 来源: 题型:


分式方程=2的解是(  )

A.1       B.﹣1   C.3       D.无解

 

查看答案和解析>>

同步练习册答案