精英家教网 > 初中数学 > 题目详情

【题目】一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.请你根据图象,回答下列问题:
(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达B地;
(2)在下列3个问题中任选一题求解(多做不加分): ①快车追上慢车需几个小时?
②求慢车、快车的速度;
③求A、B两地之间的路程.

【答案】
(1)2;276;4
(2)解:设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为 千米/小时,快车的速度为 千米/小时,根据两车行驶的路程相等,可以列出方程

解得x=6(小时).

所以,

①快车追上慢车需6﹣2=4(小时);

②慢车的速度为 千米/小时,快车的速度为 千米/小时;

③A、B两地间的路程为46×18=828千米.


【解析】解:(1)慢车比快车早出发2小时,快车追上慢车时行驶了276千米,快车比慢车早4小时到达B地;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】陈老师从拉面的制作中受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段,对折后(重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段上的均变成变成1).那么在线段()的点中,在第次操作后,恰好被拉到与1重合的点所对应的数为________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】复习全等三角形的知识时老师布置了一道作业题:

如图①已知ABC中,AB=AC,PABC内任意一点AP绕点A顺时针旋转至AQ,使∠QAP=BAC,连接BQ,CP,BQ=CP.”

小亮是个爱动脑筋的同学他通过对图①的分析证明了ABQ≌△ACP,从而证得BQ=CP之后他将点P移到等腰三角形ABC原题中其他条件不变发现“BQ=CP”仍然成立请你就图②给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线l1:y=x2﹣4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.

(1)直接写出l2所对应的函数表达式;
(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.
(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC=2,BC边上有10个不同的点P1,P2,……,P10(i = 1,2,……,10),那么 M1+M2+……+M10的值为(

A. 4 B. 14 C. 40 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量出大楼AB的高度,从距离楼底B处50米的点C(点C与楼底B在同一水平面上)出发,沿倾斜角为30°的斜坡CD前进20米到达点D,在点D处测得楼顶A的仰角为64°,求大楼AB的高度(结果精确到1米)(参考数据:sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)分别求出代数式a2﹣2ab+b2和(a﹣b)2的值.

其中a=,b=3;②a=5,b=3;③a=﹣1,b=2.

(2)观察(1)中的①②③你发现这两个多项式有什么关系,直接写出.

(3)利用你发现的规律,求出1.4372﹣2×1.437×0.437+0.4372的值.

查看答案和解析>>

同步练习册答案