【题目】某工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料.
每个季节该厂能获得A种原料120吨,B种原料50吨
(1)如何安排生产,才能恰好使两种原料全部用完,此时总产值是多少万元.
(2)在夏季中甲种产品售价上涨,而乙种产品售价下降,并且要求甲种产品比乙种产品多生产20件,问如何安排甲、乙两种产品的生产,使总产值是1264千元.
【答案】(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品22件,乙种产品2件使总产值是1264千元.
【解析】
(1)设生产甲种产品x件,生产乙种产品y件,根据生产刚好用完所有原料,可列出方程组求出甲乙两种产品的产量,再根据售价计算总产值;
(2)设乙种产品生产m件, 则生产甲种产品(m+20)件,分别计算出甲乙两种产品的产值,根据总产值是1264千元列出方程求解.
解:(1)设生产甲种产品x件,生产乙种产品y件,依题意有
,解得,
千元,
1350千元=135万元.
答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;
(2)设乙种产品生产m件,则生产甲种产品(m+20)件,依题意有
(1+10%)×50(m+20)+(1-10%)×20m=1264,
解得m=2, m+20=22,
此时消耗A原料22×4+2×3=94<120,
消耗B原料22×2+2×1=46<50,
所以这样安排可行,
答:安排生产甲种产品22件,乙种产品2件使总产值是1264千元.
科目:初中数学 来源: 题型:
【题目】为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平某游泳馆暑期推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费20元;方式二:不购买会员证,每次游泳付费25元.设小明计划今年暑期游泳次数为x(x为正整数).根据题意列表:
游泳次数 | 5 | 8 | 10 | … | x |
方式一的总费用(元) | 200 | 260 | m | … | |
方式二的总费用(元) | 125 | 200 | 250 | … |
(1)表格中的m值为 ;
(2)根据题意分别求出两种付费方式中与自变量x之间的函数关系式并画出图象;
(3)请你根据图象,帮助小明设计一种比较省钱的付费方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.
(1)数轴上点B表示的数为 ;点P表示的数为 (用含t的代数式表示).
(2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q停止运动.设运动时间为t秒.
①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.
②当点P是线段AQ的三等分点时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中 的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是___________m,他途中休息了_____________min;
(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着出行方式的多样化,某地区打车有三种乘车方式,收费标准如下(假设打车的平均车速为30千米/小时):
网约出租车 | 网约顺风车 | 网约专车 |
3千米以内:12元 | 1.5元/千米 | 2元/千米 |
超过3千米的部分:2.4元/千米 | 0.5元/分钟 | 0.6元/分钟 |
(如:乘坐6千米,耗时12分钟,网约出租车的收费为:12+2.4×(6-3)=19.2(元);网约顺风车的收费为:6×1.5+12×0.5=15(元);网约专车的收费为:6×2+12×0.6=19.2(元))
请据此信息解决如下问题:
(1)王老师乘车从纵棹园去汽车站,全程8千米,如果王老师乘坐网约出租车,需要支付的打车费用为______元;
(2)李校长乘车从纵掉园去生态园,乘坐网约顺风车比乘坐网约出租车节省了2元.求从纵棹园去生态园的路程;
(3)网约专车为了和网约顺风车竞争客户,分别推出了优惠方式:网约顺风车对于乘车路程在5千米以上(含5千米)的客户每次收费立减6元;网约专车打车车费一律七五折优惠.对采用哪一种打车方式更合算提出你的建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,试说明直线AD与BC垂直请在下面的解答过程的空格内填空或在括号内填写理由.
理由:,已知
____________,______
____________
又,已知
______等量代换
____________,______
______
,已知
,,
____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知y﹣2与x成正比例,且x=2时,y=﹣6.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.
(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+6相交于点M(1,p)
①关于x,y的二元一次方程组的解为 ;②求直线l1的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com