【题目】如图,已知,依据作图痕迹回答下面的问题:
(1)和的位置关系是_________________;
(2)若,时,求的周长;
(3)若,,求的度数.
【答案】(1)MN垂直平分AC;(2)8;(3)90°.
【解析】
(1)根据作图痕迹可知MN为所作的AC的垂直平分线;
(2)根据垂直平分线的性质可得AE=EC,从而将△ABE周长转化为AB+BC;
(3)由条件可得△ABE是等边三角形,再利用等腰三角形的性质和三角形内角和得出∠BAC的度数.
解:(1)由作图痕迹可知:MN是线段AC的垂直平分线,
∴和的位置关系是:MN垂直平分AC;
(2)∵MN垂直平分AC,
∴AE=EC,
∵,,
∴△ABE的周长=AB+BE+AE=AB+BC=8;
(3)∵,,
∴△ABE是等边三角形,∠B=∠BAE,
∵AE=EC,
∴∠C=∠EAC,
∵∠B+∠BAE+∠C+∠EAC=180°,
∴∠BAC=∠BAE+∠EAC=90°.
科目:初中数学 来源: 题型:
【题目】甲、乙两人同时从相距千米的地匀速前往地,甲乘汽车,乙骑电动车,甲到达地停留半个小时后按原速返回地,如图是他们与地之间的距离(千米)与经过的时间(小时)之间的函数图像.
(1) ,并写出它的实际意义 ;
(2)求甲从地返回地的过程中与之间的函数表达式,并写出自变量的取值范围;
(3)已知乙骑电动车的速度为千米/小时,求乙出发后多少小时与甲相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(-1,5),B(﹣1,0),C(﹣4,3).
(1)在图中画出△ABC关于y轴对称的图形△A1B1C1;(其中A1、B1、C1分别是A、B、C的对应点,不写画法.)
(2)写出点A1、B1、C1的坐标;
(3)求出△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥DC,边AD与BC不平行
(1)若∠A=∠B,求证:AD=BC.
(2)已知AD=BC,∠A=70°,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=DC,BE=CF.求证:
(1)AF=DE
(2)若OP⊥EF,求证:OP平分∠EOF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,甲发出一个十分关键的球,出手点为,羽毛球距地面高度(米)与其飞行的水平距离(米)之间的关系式为.如图,已知球网距原点米,乙(用线段表示)扣球的最大高度为米,设乙的起跳点的横坐标为,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则的取值范围是( )
A. . B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图9的两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生;
(2)请将条形统计图补充完整;
(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接全市体育中考,某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的名男生中随机抽取了部分男生的测试成绩(单位:米,精确到米)作为样本进行分析,绘制了如图所示的频率分布直方图(每组含最低值,不含最高值).已知图中从左到右每个小长方形的高的比依次为,其中的频数为,请根据有关信息解答下列问题:
填空:这次调查的样本容量为________,这一小组的频率为________;
请指出样本成绩的中位数落在哪一小组内,并说明理由;
样本中男生立定跳远的人均成绩不低于多少米;
请估计该校初三男生立定跳远成绩在米以上(包括米)的约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com