【题目】如图,在平面直角坐标系中、、.
(1)在图中作出关于轴对称的图形;
(2)写出、、的坐标,分别是(____,_____)、(____,_____)、(____,_____);
(3)的面积是______________.
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
“ a 2 ≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:
x2 4x 5 x2 4x 4 1 x 22 1 ,
∵ x 22 ≥0,
∴ x 22 1 ≥1,
∴ x2 4x 5 ≥1.
试利用“配方法”解决下列问题:
(1)填空: x2 4x 5 ( x )2+ ;
(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;
(3)比较代数式 x2 1与2x 3 的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在菱形ABCD 中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.
(1)求证:△BCE≌△DCF;
(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,2),B(1,﹣1),C(3,0).
(1)在图1中,画出以点O为位似中心,放大△ABC到原来的2倍的△A1B1C1;
(2)若P(a,b)是AB边上一点,平移△ABC之后,点P的对应点P'的坐标是(a+3,b﹣2),在图2中画出平移后的△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,点P从点C出发沿线段CA以每秒2cm的速度运动,同时点Q从点B出发沿线段BC以每秒1cm的速度运动.设运动时间为t秒(0<t<5).
(1)填空:AB= cm;
(2)t为何值时,△PCQ与△ACB相似;
(3)如图2,以PQ为斜边在异于点C的一侧作Rt△PEQ,且,连结CE,求CE.(用t的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是( )
A.6B.3C.2D.1.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:(1)|﹣3|+(2018﹣π)0﹣+()﹣1
(2)化简:(a+1)2﹣a(a﹣2)
(3)解方程:x2+4x﹣5=0;
(4)2x2﹣3x﹣1=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的顶点B、C的坐标分别为(3,4)、(4,2),且AB平行于x轴,将Rt△ABC向左平移,得到Rt△A′B′C′.若点B′、C′同时落在函数y=(x>0)的图象上,则k的值为( )
A.2B.4C.6D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示.回答下列问题:
(1)机动车行驶几小时后,在途中加油站加油?
(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;
(3)中途加油多少升?
(4)如果加油站距目的地还有320千米,车速为60千米/时,要到达目的地,油箱中的油是否够用?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com