精英家教网 > 初中数学 > 题目详情

【题目】(8分)如图,⊙O是△ABC的外接圆,AB为直径,ODBC交⊙O于点D,交AC于点E,连接AD,BD,CD.

(1)求证:EAC中点;

(2)求证:AD=CD;

3)若AB=10cosABC=,求tanDBC的值.

【答案】1)见解析;(2)见解析;(3 .

【解析】试题分析: 根据中位线的推论即可证明.

AB为直径,ODBC,易得,然后由垂径定理证得, ,继而证得结论;

可求得的长,继而求得的长,则可求得然后由圆周角定理,证得 则可求得答案.

试题解析:

1)证明:∵ODBC

EAC中点;

2AB为直径,

ODBC

,

3

由勾股定理得,

由勾股定理得,

,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,CD是半圆O上的两点,且OD∥BCODAC交于点E

1)若∠B=70°,求∠CAD的度数;

2)若AB=4AC=3,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形纸片ABCD中,AB=6BC=8

1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DEBC相交于点F,求BF的长;

2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骑共享单车已成为人们喜爱的一种绿色出行方式.已知A、B、C三家公司的共享单车都是按骑车时间收费,标准如下:

公司

单价(元/半小时)

充值优惠

A

m

充20元送5元,即:充20元实得25元

B

m-0.2

C

1

充20元送20元,即:充20元实得40元

(注:使用这三家公司的共享单车,不足半小时均按半小时计费.用户的账户余额长期有效,但不可提现.)

4月初,李明注册成了A公司的用户,张红注册成了B公司的用户,并且两人在各自账户上分别充值20元.一个月下来,李明、张红两人使用单车的次数恰好相同,且每次都在半小时以内,结果到月底李明、张红的账户余额分别显示为5元、8元.

(1)求m的值;

(2)5月份,C公司在原标准的基础上又推出新优惠:每月的月初给用户送出5张免费使用券(1

次用车只能使用1张券).如果王磊每月使用单车的次数相同,且在30次以内,每次用车都不超过

半小时. 若要在这三家公司中选择一家并充值20元,仅从资费角度考虑,请你帮他作出选择,并说

明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:

甲:连接AC,作AC的中垂线交ADBCEF,则四边形AFCE是菱形.

乙:分别作的平分线AEBF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.

对于甲、乙两人的作法,可判断( )

A.甲正确,乙错误B.甲错误,乙正确

C.甲、乙均正确D.甲、乙均错误

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)如图2过点QQG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是(

A.有两条边对应相等的两个三角形全等

B.两腰对应相等的两个等腰三角形全等

C.两角对应相等的两个等腰三角形全等

D.一边对应相等的两个等边三角形全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线ACBD相交于点O,不能判断四边形ABCD是平行四边形的是(  )

A.AB=DCAD=BCB.ABDCADBC

C.ABDCAD=BCD.OA=OCOB=OD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)12(-18)(-7)15

(2)(-2.7)(1)-(-6.7)(-1.6)

(3)20+(-14)-(-18)-13

(4)81÷|-2|×

(5)

(6)14(10.5×)×2-23

查看答案和解析>>

同步练习册答案