【题目】如图,在4×4的网格中,每一个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,以O为坐标原点建立如图所示的平面直角坐标系.若抛物线y=x2+bx+c的图象至少经过图中(4×4的网格中)的三个格点,并且至少一个格点在x轴上,则符合要求的抛物线一定不经过的格点坐标为( )
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
【答案】B
【解析】
二次项系数为1,该抛物线开口向上,根据二次函数的图象和性质进行若过(1,3),则可过点(2,0),此时抛物线解析式为:y=x2-6x+8,过另一个点(4,0),故A不符合题意;同理,可计算B,C,D选项中的格点是否符合题意.
解:∵二次项系数为1,
∴该抛物线开口向上
选项A:若过(1,3),则可过点(2,0),此时抛物线解析式为:y=x2-6x+8,过另一个点(4,0),故A不符合题意;
选项B:若过(2,3),则可过点(3,1),此时抛物线解析式为:y=x2﹣7x+13,若同时过x轴上的可能的格点(4,0),此时x=4时,y=1,故B符合题意;
选项C:若过(1,4),则可过点(3,0),此时抛物线解析式为:y=x2-6x+9,过另一个点(4,1),故C不符合题意;
选项D:若过(2,4),则可过点(4,0),此时抛物线解析式为:y=x2-8x+16,过另一个点(3,1),故D不符合题意;
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为( )
A. B. C. ﹣2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)设直线l与y轴交于点D,抛物线交y轴于点E,则△DBE的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.
(1)求抛物线解析式及B点坐标;
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若点M在第一象限内抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若∠DOC = 60°,BC = 6,求矩形ABCD的对角线长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知二次函数y=ax2+bx+c的y与x的部分对应值如下表;
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x﹤l时,函数值y随x 的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有( )
A. 4个B. 1个C. 3个D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】边长为8的正方形ABCD中,点P在BC边上,CP=2,点Q为线段AP上一动点,射线BQ与正方形ABCD的一边交于点R,且AP=BR,那么____________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com