【题目】图象经过三点,和()的函数只可能是( )
A.正比例函数B.一次函数C.反比例函数D.二次函数
【答案】D
【解析】
依次分析正比例函数,一次函数,可得出这三点不在同一直线上,故不可能是正比例函数和一次函数,若为反比例函数,分析可得出互相矛盾的结论,故只能是二次函数.
解:设A,B,C(),函数的图象过点A和B,
(1)若为正比例函数,设解析式为y=kx, 函数的图象过点A和B,,易得k=3,
∴y=3x,
把B代入,得,
解得,则,即C(3,-4),
易知C(3,-4)不在直线y=3x上,故这个函数不可能是正比例函数;
(2)若为一次函数,且过点B和点C(),设y=kx+b,则有:,
解得:()
则当x=1时,
所以A不在直线上,
故这个函数不可能是一次函数;
(3)若为反比例函数,设,将A代入可得k=4,即
将B代入,可得,
将C代入,可得,与前面矛盾且无解,
故这个函数不可能是反比例函数;
(4)综上可知,点A,B,C不在同一直线上,因此过这三点可得一抛物线,即这个函数只可能是二次函数.
故选:D
科目:初中数学 来源: 题型:
【题目】为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:
(1)求本中学成绩类别为“中”的人数;
(2)求出扇形图中,“优”所占的百分比,并将条形统计图补充完整;
(3)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)构成正方形ABCD,以AB为边做等边△ABE,则∠ADE和点E的坐标分别为( )
A. 15°和(2,1+)
B. 75°和(2,﹣1)
C. 15°和(2,1+)或75°和(2,﹣1)
D. 15°和(2,1+)或75°和(2,1﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂可绕点旋转,摆动臂可绕点旋转, ,.
(1)在旋转过程中,当为同一直角三角形的顶点时,的长为______________.
(2)若摆动臂顺时针旋转90°,点的位置由外的点转到其内的点处,连结,如图2,此时,,的长为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级上学期,我们探究了“设计制作长方体形状的包装纸盒”,今天我们继续运用所学知识,解决“设计制作长方体形状的包装纸盒”中常见的问题.如图1是一块边长为60cm 的正方形薄铁片,现在用它来制作成如图2的一个长方体盒子.
(1)如果要做成一个没有盖的长方体盒子,可先在薄铁片的四个角上截去四个相同的小正方形,边长为xcm, 然后把四边折合起来.
①求做成的盒子底面积ycm2与截去小正方形边长xcm之间的函数关系式;
②当做成的盒子的底面积为900cm2时,试求该盒子的容积.
(2)如果要做成一个有盖的长方体盒子,其制作方案要求同时符合下列两个条件:
①必须在薄铁片的四个角上各截去一个四边形(其余部分不能裁截);
②折合后薄铁片既无空隙、又不重叠地围成各盒面,请你画出符合上述制作方案的一种草案(不必说明画法与根据),并求当底面积为800cm2时,该盒子的高.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图中,,是边上一点,,过点三点的交于点,点在上,连接
(1)求证:是等腰三角形;
(2)若,请用题意可以推出的结论说明命题:“一组对边相等,且一组对角相等的四边形是平行四边形”是假命题
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽度为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2 , 求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是( )
A.(20+x)(32+x)=540
B.(20﹣x)(32﹣x)=100
C.(20﹣x)(32﹣x)=540
D.(20-2x)(32﹣2x)=540
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与x轴,y轴分别交于点A(2,0),点B(0,2),动点D以1个单位长度/秒的速度从点A出发向x轴负半轴运动,同时动点E以个单位长度/秒的速度从点B出发向y轴负半轴运动,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F
(1)求∠OAB度数;
(2)当t为何值时,四边形ADEF为菱形,请求出此时二次函数解析式;
(3)是否存在实数t,使△AGF为直角三角形?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com