精英家教网 > 初中数学 > 题目详情

【题目】七年级上学期,我们探究了“设计制作长方体形状的包装纸盒”,今天我们继续运用所学知识,解决“设计制作长方体形状的包装纸盒”中常见的问题.如图1是一块边长为60cm 的正方形薄铁片,现在用它来制作成如图2的一个长方体盒子.

1)如果要做成一个没有盖的长方体盒子,可先在薄铁片的四个角上截去四个相同的小正方形,边长为xcm, 然后把四边折合起来.

①求做成的盒子底面积ycm2与截去小正方形边长xcm之间的函数关系式;

②当做成的盒子的底面积为900cm2时,试求该盒子的容积.

2)如果要做成一个有盖的长方体盒子,其制作方案要求同时符合下列两个条件:

①必须在薄铁片的四个角上各截去一个四边形(其余部分不能裁截);

②折合后薄铁片既无空隙、又不重叠地围成各盒面,请你画出符合上述制作方案的一种草案(不必说明画法与根据),并求当底面积为800cm2时,该盒子的高.)

【答案】113500cm3;(2)答案见解析,10cm.

【解析】

1)①可根据图中给出的信息,先表示出盒子的正方形底面的边长,然后根据正方形的面积公式即可得出xy的函数关系式;

②可将底面积代入①的式子中,求出高,然后根据底面积×=容积,即可得出容积是多少;

2)只要符合要求的图形都可以,求法同(1).

解:(1)①由题意可得

②当y=900时,,解得x=15x=45(不合题意舍去)

因此盒子的容积应该是900×15=13500(立方厘米).

答:该盒子的容积是13500立方厘米.

2)如图:

图中阴影部分为裁剪部分.

列方程得:

解这个方程得:x=10x=50(不符合题意,舍去).

∴盒子的高为10cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

1)如图,点P是四边形ABCD内一点,且满足PAPBPCPD,∠APB=∠CPD,点EFGH分别为边ABBCCDDA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

2)若改变(1)中的条件,使∠APB=∠CPD90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣101且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为

1)请你帮他们用树状图或列表法表示所有可能出现的结果;

2)求满足关于x的方程没有实数根的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校举办了学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为“单人组”和“双人组”.小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数(是常数,)在同一平面直角坐标系的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图象经过三点()的函数只可能是(  )

A.正比例函数B.一次函数C.反比例函数D.二次函数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+2经过点A(10)B(40),交y轴于点C

1)求抛物线的解析式(用一般式表示)

2)点Dy轴右侧抛物线上一点,是否存在点D使SABC=SABD?若存在,请求出点D坐标;若不存在,请说明理由;

3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1B2m0),C3m0)是平面直角坐标系中两点,其中m为常数,且m0E0n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90°A′D′C′,连接ED′,抛物线)过EA′两点.

1)填空:∠AOB= °,用m表示点A′的坐标:A′ );

2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,D′OEABC是否相似?说明理由;

3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过MMN⊥y轴,垂足为N

abm满足的关系式;

m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

查看答案和解析>>

同步练习册答案