精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙OABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点DDEAC分别交ACAB的延长线于点EF

1)求证:EF是⊙O的切线;

2)若AC=4CE=2,求的长度.(结果保留π

【答案】1)证明见解析;(2

【解析】

1)连接OD,由OA=OD知∠OAD=ODA,由AD平分∠EAF知∠DAE=DAO,据此可得∠DAE=ADO,继而知ODAE,根据AEEF即可得证;

2)作OGAE,知AG=CG=AC=2,证四边形ODEG是矩形得OA=OB=OD=CG+CE=4,再证ADE∽△ABDAD2=48,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.

1)如图,连接OD

OA=OD

∴∠OAD=ODA

AD平分∠EAF

∴∠DAE=DAO

∴∠DAE=ADO

ODAE

AEEF

ODEF

EF是⊙O的切线;

2)如图,作OGAE于点G,连接BD

AG=CG=AC=2,∠OGE=E=ODE=90°

∴四边形ODEG是矩形,

OA=OB=OD=CG+CE=2+2=4,∠DOG=90°

∵∠DAE=BAD,∠AED=ADB=90°

∴△ADE∽△ABD

,即

AD2=48

RtABD中,BD==4

RtABD中,∵AB=2BD

∴∠BAD=30°

∴∠BOD=60°

的长度为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着生活水平的提高,人们对空气质量的要求也越来越高。为了了解月中旬长春市城区的空气质量情况,某校综合实践环境调查小组,从天气预报网抽取了朝阳区和南关区这两个城区——日的空气质量指数,作为样本进行统计,过程如下,请补充完整.

收集数据

朝阳区

南关区

整理、描述数据

按下表整理、描述这两城区空气质量指数的数据.

空气质量

轻微污染

中度污染

重度污染

朝阳区

南关区

(说明:空气质量指数时,空气质量为优;空气质量指数时,空气质量为良;空气质量指数时,空气质量为轻微污染;空气质量指数时,空气质量为中度污染;空气质量指数时,空气质量为重度污染.

分析数据

两城区的空气质量指数的平均数、中位数、方差如下表所示.

城区

平均数

中位数

方差

朝阳区

南关区

请将以上两个表格补充完整.

得出结论可以推断出哪个城区这十天中空气质量情况比较好?请至少从两个不同的角度说明推断的合理性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的长方形由两个这样的图形拼成,若,则该长方形的面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°AC=4BC=3,点DAC的中点,连接BD,按以下步骤作图:①分别以BD为圆心,大于BD的长为半径作弧,两弧相交于点P和点Q;②作直线PQAB于点E,交BC于点F,则BF=(  )

A. B. 1C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+3y轴于点A,交x轴于点B-30)和点C10),顶点为点M

1)求抛物线的解析式;

2)如图,点Ex轴上一动点,若AME的周长最小,请求出点E的坐标;

3)点F为直线AB上一个动点,点P为抛物线上一个动点,若BFP为等腰直角三角形,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1Q(x2,y2,若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场试销一种成本为/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于,经试销发现,销售量()与销售单价(/)符合一次函数,且时,时,.

(1)写出销售单价的取值范围;

(2)求出一次函数的解析式;

(3)若该商场获得利润为元,试写出利润与销售单价之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为5的⊙O中,弦AB=6P是弦AB所对的优弧上的动点,连接AP,过点AAP的垂线交射线PB于点C,当PAB是等腰三角形时,线段BC的长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备购进一批AB两型号节能灯,已知2只A型节能灯和3只B型节能灯共需31元;1只A型节能灯和2只B型节能灯共需19元.

(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?

(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.

查看答案和解析>>

同步练习册答案