精英家教网 > 初中数学 > 题目详情

【题目】如图,我们把杜甫(绝句)整齐排列放在平面直角坐标系中:

(1)“的坐标依次是:____________________.;

(2)将第1行与第3行对调,再将第4列与第6列对调,由开始的坐标________依次变换到:________________

(3)“开始的坐标是(11),使它的坐标到(32),应该哪两行对调,同时哪两列对调?

【答案】(1)(3,1)、(1,2)、(7,4);(2)(6,1)、(6,3)、(4,3);(3)第一行与第二行对调,同时第一列与第三列对调.

【解析】

(1)根据平面直角坐标系内点的坐标是:前横后纵,中间逗号隔开,可得答案;
(2)根据行对调,纵坐标变化,列对调,横坐标变化,可得答案;
(3)根据行对调,纵坐标变化,列对调,横坐标变化,可得答案.

解:(1)“东”、“窗”和“柳”的坐标依次是:(3,1)、(1,2)(7,4)

(2)将第1行与第3行对调,再将第4列与第6列对调,“里”由开始的坐标(6,1)依次变换到:(6,3)(4,3)

(3)“门”开始的坐标是(1,1),使它的坐标到(3,2),应该第一行与第二行对调,同时第一列与第三列对调.

故答案为:(1)(3,1)、(1,2)、(7,4);

(2)(6,1)、(6,3)、(4,3);

(3)第一行与第二行对调,同时第一列与第三列对调.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y= (x﹣5)(x+m)(m是常数,m>0)的图象与x轴交于点A和点B(点A在点B的右侧)与y轴交于点C,连接AC.
(1)用含m的代数式表示点B和点C的坐标;
(2)垂直于x轴的直线l在点A与点B之间平行移动,且与抛物线和直线AC分别交于点M、N,设点M的横坐标为t,线段MN的长为p.
①当t=2时,求p的值;
②若m≤1,则当t为何值时,p取得最大值,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某河堤的横断面是梯形ABCD,BC∥AD,BE⊥AD于点E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,现将正方形OABC绕点O顺时针旋转.

(1)如图①,当点A的对应的A′落在直线y=x上时,点A′的对应坐标为;点B的对应点B′的坐标为
(2)旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N,当A点第一次落在直线y=x上时,停止旋转.
①如图2,在正方形OABC旋转过程中,线段AM,MN,NC三者满足什么样的数量关系?请说明理由;
②当AC∥MN时,求△MBN内切圆的半径(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将正整数按如图所示的规律排列下去.若用有序实数对表示第排、从左到右第个数,如3,2表示实数5.

1图中7,3位置上的数 ;数据45对应的有序实数对是 .

2第2n行的最后一个数为 ,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,点A、点B均为格点.

(1)AB的长等于
(2)若点C是以AB为底边的等腰直角三角形的顶点,点D在边AC上,且满足S△ABD= S△ABC . 请在如图所示的网格中,用无刻度的直尺,画出线段BD,并简要说明点D的位置时如何找到的(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

第一个等式:

第二个等式:

第三个等式:

第四个等式:

则式子__________________

用含n的代数式表示第n个等式: ____________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两台机床同时生产同一种零件,在10天中两台机床每天生产的次品数如下:

甲:0,1,0,2,2,0,3,1,2,4;

乙:2,3,1,1,0,2,1,1,0,1.

(1)分别计算两组数据的平均数和方差;

(2)从结果看,在10天中哪台机床出现次品的波动较小?

(3)由此推测哪台机床的性能较好

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.

(1)求抛物线的解析式;
(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;
(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;
(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案