精英家教网 > 初中数学 > 题目详情

【题目】若抛物线yax2+bx+ca≠0)与x轴两个交点间的距离为6,称此抛物线为定弦抛物线.已知某定弦抛物线开口向上,对称轴为直线x2,且通过(1y1),(3y2),(﹣1y3),(﹣3y4)四点,则y1y2y3y4中为正数的是(  )

A. y1B. y2C. y3D. y4

【答案】D

【解析】

根据定弦抛物线的定义结合其对称轴,得到抛物线与x轴的交点坐标,再利用二次函数图象的性质得到结论.

解:∵某定弦抛物线的对称轴为直线x2

∴该定弦抛物线过点(﹣10)、(50),

∴该抛物线的大致图象如图所示:

所以在(1y1),(3y2),(﹣1y3),(﹣3y4)四点中,y4为正数.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.

(1)“从中任意抽取1个球不是红球就是白球   事件,从中任意抽取1个球是黑球   事件;

(2)从中任意抽取1个球恰好是红球的概率是   

(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④,其中所有正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,∠A=45°CDAB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).

(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C'

(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A'B'C',请直接画出旋转后的△A'B'C'

(3)(2)的旋转过程中,求点A'所经过的路线长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:

根据图表解答下列问题:

1)请将条形统计图补充完整;

2)在抽样数据中,产生的有害垃圾共   吨;

3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABAC5BC8,若△ABC沿射线BC方向平移m个单位得到△DEF,顶点ABC分别与DEF对应,若以点ADE为顶点的三角形是等腰三角形,则m的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一动点从半径为2O上的A0点出发,沿着射线A0O方向运动到O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____

查看答案和解析>>

同步练习册答案