精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④,其中所有正确结论的序号是

【答案】①②③④

【解析】

试题分析:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB

∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,OA=OC,A=ECO,AD=CE,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.

②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.

③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.

④正确.∵D、C、E、O四点共圆,∴OPPC=DPPE,∴+2DPPE=+2OPPC=2OP(OP+PC)=2OPOC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴,∴OPOC=,∴+2DPPE===,∵CD=BE,CE=AD,∴,∴

故④正确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2011广西崇左,183分)已知:二次函数y=ax2+bx+ca≠0)的图象如图所示,下列结论中:abc0②2a+b0a+bmam+b)(m≠1的实数);a+c2b2a1.其中正确的项是( )

A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC90°,点EBC边上,且CACE,过ACE三点的⊙OAB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CDCF

1)求证:四边形DCFG是平行四边形;(2)当BE4CDAB时,求⊙O的直径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:

1)当轿车刚到乙地时,此时货车距离乙地   千米;

2)当轿车与货车相遇时,求此时x的值;

3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4cmBC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.若动点MN同时出发,相遇时停止运动,若点E在线段BC上,且BE=3cm,经过_____秒钟,点AEMN组成平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ABC=90°,AO是△ABC的角平分线,以O为圆心,OB为半径作圆交BC于点D

1)求证:直线AC是⊙O的切线;

2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4tanCBE=

①求BE的长;②求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,小张把容积为60升的油箱加满后自驾出行,行驶一段路程后进入服务区停车休息,休息后,小张离开服务区继续前行,为能顺利到达目的地,小张需在相距S千米的加油站加油.若小张从出发点到服务区休息点行驶的路程为200千米,且这期间平均油耗为每千米0.12.

(1)求小张离开服务区休息点时,油箱内还有多少升汽油?

(2)记小张从离开服务区休息点到进入加油站加油期间的平均油耗为每千米a升,请写出Sa的函数关系式;若0.08≤a≤0.1,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线yax2+bx+ca≠0)与x轴两个交点间的距离为6,称此抛物线为定弦抛物线.已知某定弦抛物线开口向上,对称轴为直线x2,且通过(1y1),(3y2),(﹣1y3),(﹣3y4)四点,则y1y2y3y4中为正数的是(  )

A. y1B. y2C. y3D. y4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?

查看答案和解析>>

同步练习册答案