精英家教网 > 初中数学 > 题目详情

【题目】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )

A. 10B. 12C. 20D. 24

【答案】B

【解析】

根据图象可知点PBC上运动时,此时BP不断增大,而从CA运动时,BP先变小后变大,从而可求出BCAC的长度.

解:根据图象可知点PBC上运动时,此时BP不断增大,
由图象可知:点PBC运动时,BP的最大值为5,即BC=5
由于M是曲线部分的最低点,
∴此时BP最小,即BPACBP=4
∴由勾股定理可知:PC=3
由于图象的曲线部分是轴对称图形,
PA=3
AC=6
∴△ABC的面积为:×4×6=12.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.

(1)第一次水果的进价是每千克多少元?

(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点的坐标为,点的坐标为,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55x=75时,y=45

1)求一次函数y=kx+b的表达式;

2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下面一段材料,再完成后面的问题:

材料:过抛物线y=ax2(a0)的对称轴上一点(0,﹣)作对称轴的垂线l,则抛物线上任意一点P到点F(0,)的距离与Pl的距离一定相等,我们将点F与直线l分别称作这抛物线的焦点和准线,如y=x2的焦点为(0,).

问题:若直线y=kx+b交抛物线y=x2A、B、AC、BD垂直于抛物线的准线l,垂直足分别为C、D(如图).

①求抛物线y=x2的焦点F的坐标;

②求证:直线AB过焦点时,CFDF;

③当直线AB过点(﹣1,0),且以线段AB为直径的圆与准线l相切时,求这条直线对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCACB=90°,AC=BC,EAC上一点连接BE

1)如图1,AB=,BE=5,AE的长

2)如图2,D是线段BE延长线上一点过点AAFBD于点F,连接CDCF,AF=DF求证:DC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点边上,且是射线上的一个动点(不与点重合,且),在射线上截取,连接.

当点在线段上时,

①点与点重合,请根据题意补全图1,并直接写出线段的数量关系为

②如图2,若点不与点重合,请证明;

(2)当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,ECD上一点,BEACF,连接DF.

(1)证明:∠BAC=∠DAC.

(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是本地区一种产品30天的销售图象,产品日销售量y(单位:件)与时间t(单位:天)的大致函数关系如图①,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )

A. 日销售量为150件的是第12天与第30天

B. 第10天销售一件产品的利润是15元

C. 从第1天到第20天这段时间内日销售利润将先增加再减少

D. 第18天的日销售利润是1225元

查看答案和解析>>

同步练习册答案