【题目】先阅读下面一段材料,再完成后面的问题:
材料:过抛物线y=ax2(a>0)的对称轴上一点(0,﹣)作对称轴的垂线l,则抛物线上任意一点P到点F(0,)的距离与P到l的距离一定相等,我们将点F与直线l分别称作这抛物线的焦点和准线,如y=x2的焦点为(0,).
问题:若直线y=kx+b交抛物线y=x2于A、B、AC、BD垂直于抛物线的准线l,垂直足分别为C、D(如图).
①求抛物线y=x2的焦点F的坐标;
②求证:直线AB过焦点时,CF⊥DF;
③当直线AB过点(﹣1,0),且以线段AB为直径的圆与准线l相切时,求这条直线对应的函数解析式.
【答案】①F(0,1);②证明见解析;③AB对应的函数解析式为y=x+1.
【解析】
①将a=代入题中给出的焦点坐标公式中即可.
②根据焦点的概念可知:AC=AF,BF=BD,如果连接CF、DF,那么CF必平分角AFO(可用三角形全等证出).同理可求得DF平分∠BFO,由此可得证.
③可连接圆心与切点,设圆心为M,切点为N,那么MN就是梯形ACDB的中位线,因此MN=(AC+BD)=AB,根据焦点的定义知:AF=AC,BF=BD,因此AF+BF=AB,也就是说直线AB恰好过焦点F,那么可根据F的坐标(①已求得)和已知的点(-1,0)的坐标用待定系数法求出抛物线的解析式.
①F(0,1)
②证明:∵AC=AF,
∴∠ACF=∠AFC
又∵AC∥OF,
∴∠ACF=∠CFO,
∴CF平分∠AFO,同理DF平分∠BFO;
而∠AFO+∠BFO=180°
∴∠CFO+∠DFO=(∠AFO+∠BFO)=90°;
∴CF⊥DF.
③设圆心为M,且与l的切点为N,连接MN;
∴MN=AB
在直角梯形ACDB中,M是AB的中点.
∴MN=(AC+BD),而AC=AF,BD=BF.
∴MN=(AF+BF)
∴AF+BF=AB
∴AB过焦点F(0,1).
又AB过点(﹣1,0)
∴
解得
∴AB对应的函数解析式为y=x+1.
科目:初中数学 来源: 题型:
【题目】、、、为矩形的四个顶点,,,动点、分别从点、同时出发,点以的速度向点移动,一直到达为止,点以的速度向移动.
(1)、两点从出发开始到几秒时四边形是矩形?
(2)、两点从出发开始到几秒时,点和点的距离是?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(模型建立)
(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;
(模型应用)
(2)如图2,已知直线11:y=2x+3与x轴交于点A、与y轴交于点B,将直线11绕点A逆时针旋转45°至直线12;求直线12的函数表达式;
(3)如图3,平面直角坐标系内有一点B(3,-4),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=-2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )
A. 10B. 12C. 20D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“创卫工作,人人参与”我区园林工作者,为了把城市装扮得更加靓丽,用若干相同的花盆按一定的规律组成不同的正多边形图案.如图,其中第个图形一共有个花盆,第个图形一共有个花盆,第个图形一共有个花盆...则第个图形中一共有花盆的个数为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;
点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),
(1)如图(1),当x为何值时,PQ∥AB;
(2)如图(2),若PQ⊥AC,求x;
(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用反证法证明命题“在一个三角形中,至少有一个内角小于或等于”的过程如下:
已知: ;
求证: 中至少有一个内角小于或等于.
证明:假设中没有一个内角小于或等于,即,则
,
这与“__________” 这个定理相矛盾,
所以中至少有一个内角小于或等于.
在证明过程中,横线上应填入的句子是( )
A.三角形内角和等于B.三角形的一个外角等于与它不相邻的两个内角的和
C.等边三角形的各角都相等,并且每个角都等于D.等式的性质
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com