精英家教网 > 初中数学 > 题目详情

【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
(1)求证:△ADB≌△AEC;
(2)若AD=2,BD=3,请计算线段CD的长;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
(3)证明:△CEF是等边三角形;
(4)若AE=4,CE=1,求BF的长.

【答案】(1)见解析;(2)CD =;(3)见解析;(4)

【解析】试题分析:迁移应用:(1)如图2中,只要证明∠DAB=CAE,即可根据SAS解决问题;
(2)结论:CD=AD+BD.由DAB≌△EAC,可知BD=CE,在RtADH中,DH=ADcos30°= AD,由AD=AE,AHDE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
拓展延伸:(3)如图3中,作BHAEH,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=AEC=120°,推出∠FEC=60°,推出EFC是等边三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在RtBHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.

试题解析:

迁移应用:(1)证明:如图2,

∵∠BAC=DAE=120°,
∴∠DAB=CAE,
DAEEAC中,
DA=EA,DAB=EAC,AB=AC,
∴△DAB≌△EAC,
(2)结论:CD=AD+BD.
理由:如图2-1中,作AHCDH.

∵△DAB≌△EAC,
BD=CE,
RtADH中,DH=ADcos30°=AD,
AD=AE,AHDE,
DH=HE,
CD=DE+EC=2DH+BD=AD+BD=
拓展延伸:(3)如图3中,作BHAEH,连接BE.

∵四边形ABCD是菱形,∠ABC=120°,
∴△ABD,BDC是等边三角形,
BA=BD=BC,
E、C关于BM对称,
BC=BE=BD=BA,FE=FC,
A、D、E、C四点共圆,
∴∠ADC=AEC=120°,
∴∠FEC=60°,
∴△EFC是等边三角形,
(4)∵AE=4,EC=EF=1,
AH=HE=2,FH=3,
RtBHF中,∵∠BFH=30°,
=cos30°,
BF=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数>0)的对称轴与x轴交于点B与直线l交于点C,点A是该二次函数图像与直线l在第二象限的交点,点D是抛物线的顶点,已知ACCO=1∶2,∠DOB=45°,△ACD的面积为2.

(1) 求抛物线的函数关系式;

(2) 若点P为抛物线对称轴上的一个点,且POC=45°,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在垃圾分类宣传培训后,对学生知晓情况进行了一次测试,其测试成绩按照标准划分为四个等级:A 优秀,B 良好,C 合格,D 不合格.为了了解该校学生的成绩状况,对在校学生进行随机抽样调查,调查结果绘制成了以下两幅不完整的统计图:

请结合统计图回答下列问题:

(1)该校抽样调查的学生人数为 人;

(2)请补全条形统计图;

(3)样本中,学生成绩的中位数所在等级是 ;(填“A”“B”“C”“D”

(4)该校共有学生3000人,估计全校测试成绩为优秀和良好的学生共有 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB分别与两坐标轴交于点A(6,0),B(0,12),点C的坐标为(3,0)

(1)求直线AB的解析式;

(2)在线段AB上有一动点P.

过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为16,求点P的坐标.

连结CP,是否存在点P,使ACP与AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:

时间(分钟)

里程数(公里)

车费(元)

小明

8

8

12

小刚

12

10

16

(1)求x,y的值;

(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )

A. 汽车在0~1小时的速度是60千米/时; B. 汽车在2~3小时的速度比0~0.5小时的速度快;

C. 汽车从0.5小时到1.5小时的速度是80千米/时; D. 汽车行驶的平均速度为60千米/时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数y|x|2中,自变量x可以是任意实数;

Ⅰ如表是yx的几组对应值.

y

3

2

1

0

1

2

3

x

1

0

1

2

1

0

m

①m   

An8),B108)为该函数图象上不同的两点,则n   

Ⅱ如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:

该函数的最小值为   

该函数的另一条性质是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点ABC的坐标分别为(0,2)、(-1,0)、(2,0.

1)求直线AB的函数表达式;

2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;

3)设点DABC 点构成平行四边形,直接写出所有符合条件的点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,BAC=90°,DBC的中点,EAD的中点.过点AAFBC交于BE的延长线于点F.

(1)求证:AEF≌△DEB

(2)AC=4,AB=5,求菱形ADCF的面积.

查看答案和解析>>

同步练习册答案