【题目】如图(1),已知点在正方形的对角线上,垂足为点,垂足为点.
(1)证明与推断:
求证:四边形是正方形;
推断:的值为_ _;
(2)探究与证明:
将正方形绕点顺时针方向旋转角,如图(2)所示,试探究线段与之间的数量关系,并说明理由;
(3)拓展与运用:
若,正方形在绕点旋转过程中,当三点在一条直线上时,则 .
【答案】(1)证明见解析;;(2)线段与之间的数量关系为;(3)或
【解析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证即可得;
(3)由(2)证出就可得到,再根据三点在同一直线上分在CD左边和右边两种不同的情况求出AG的长度,即可求出BE的长度.
(1)证明:四边形是正方形,
四边形是矩形,
四边形是正方形;
解:由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴
故答案为:.
(2)如下图所示连接由旋转性质知
在和中,
,
线段与之间的数量关系为;
(3)解:当正方形在绕点旋转到如下图所示时:
当三点在一条直线上时,
由(2)可知,
,
∠CEG=∠CEA=∠ABC=90°,,
当正方形在绕点旋转到如下图所示时:
当三点在一条直线上时,
由(2)可知,
,
∠CEA=∠ABC=90°,,
故答案为:或.
科目:初中数学 来源: 题型:
【题目】为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
(1)求该班总人数;
(2)根据计算,请你补全两个统计图;
(3)已知该班甲同学四次训练成绩为85,95,85,95,乙同学四次成绩分别为85,90,95,90,现需从甲、乙两同学中选派一名同学参加校级比赛,你认为应该选派哪位同学并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年,我省中考体育分值增加到分,其中女生必考项目为八百米跑,我校现抽取九年级部分女生进行八百米测试成绩如下:
成绩 | 及以下 | 及以上 | |||
等级 | |||||
百分比 |
(1)求样本容量及表格中的和的值
(2)求扇形统计图中等级所对的圆心角度数,并补全统计图.
(3)我校年级共有女生人.若女生八百米成绩的达标成绩为分,我校九年级女生八百米成绩达标的人数有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抗击疫情,人人有责,某校成立教师志愿者分队,共分宣传、测温、清理(主要厨余垃圾清理)、统计(师生疫情信息统计)四组,为了解教师对这四个小组的参与意愿情况调查,对教师进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表.
请你根据统计表中提供的信息回答下列问题:
(1)统计表中的_ ,b=_ ;
(2)根据调查结果,请你估计该市名教师中最有意向参与清理小组的人数;
(3)王老师和李老师选择参与小组,若他们每人从四个小组中随机选取一个,请用画树状图或列表格的方法,求两人恰好选中同一个的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店3月份购进甲种水果50千克、乙种水果80千克,共花费1700元,其中甲种水果以15元/千克,乙种水果以20元/千克全部售出;4月份又以同样的价格购进甲种水果60千克、乙种水果40千克,共花费1200元,由于市场不景气,4月份两种水果均以3月份售价的8折全部售出.
(1)求甲、乙两种水果的进价每千克分别是多少元?
(2)请计算该水果店3月和4月甲、乙两种水果总赢利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:
x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
解决问题:求方程x3﹣5x+2=0的解为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com