精英家教网 > 初中数学 > 题目详情

【题目】某种油菜籽在相同条件下的发芽试验结果如下表:

每批粒数n

5

10

70

130

310

700

1500

2000

3000

发芽粒数m

4

9

60

116

282

639

1339

1806

2715

请用频率估计概率的方法来估计这批油菜籽在相同条件下的发芽概率是_______(精确到0.01.

【答案】0.90

【解析】

对于不同批次的某种菜籽的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.

解:

=4+9+60+116+282+639+1339+1806+2715)÷(5+10+70+130+310+700+1500+2000+3000

=6970÷7725

0.90

n足够大时,发芽的频率逐渐稳定于0.90,故用频率估计概率,这批油菜籽在相同条件下的发芽概率是0.90

故答案为:0.90

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ABC的边BC= ,且ABC内接于半径为2的⊙O,则∠A的度数是(

A.60°B.120°C.60°120°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过AB两点,在第一象限的抛物线上取一点D,过点DDCx轴于点C,交直线AB于点E

1)求抛物线的函数表达式

2)是否存在点D,使得BDEACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;

3)如图2F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DFFG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C圆外一点,OC垂直于弦AD,垂足为点FOC交⊙O于点E,连接AC,∠BED=∠C

1)判断AC与⊙O的位置关系,并证明你的结论;

2)是否存在BE平分∠OED的情況?如果存在,求此时∠C的度数;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.

(1)求坡底C点到大楼距离AC的值;

(2)求斜坡CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一块等边三角形钢板ABC的边长为60厘米.

1)用尺规作图能从这块钢板上截得的最大圆(作出图形,保留作图痕迹),并求出此圆的半径.

2)用一个圆形纸板完全覆盖这块钢板,这个圆的最小半径是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AC与⊙O交于点F,弦AD平分∠BACDEAC,垂足为E点.

1)求证:DE是⊙O的切线;

2)若⊙O的半径为2,∠BAC60°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB45°.点D(与点BC不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF

1)如果ABAC.如图①,且点D在线段BC上运动.试判断线段CFBD之间的位置关系,并证明你的结论.

2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?

3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC4BC3CDx,求线段CP的长.(用含x的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:两座建筑物ABCD相距60米,从点A测得D点的俯角为30°,从A点下降10米到E点,在E点测得C点的俯角为43°求两座建筑物的高度.(精确到0.1)(参考数据:1.73cos43°≈0.73sin43°≈0.68tan43°≈0.93

查看答案和解析>>

同步练习册答案