【题目】如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为_______.
【答案】
【解析】
过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,利用30°所对直角边是斜边一半,即可求出B点的坐标.
解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,
∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,
∴AC是圆的切线.
∵点A的坐标为(2,2),
∴OA==4,
∵BO=2,AO=4,∠ABO=90°,
∴∠AOB=60°,
∵OA=4,OC=2,
∴sin∠OAC=,
∴∠OAC=30°,
∴∠AOC=60°,即∠AOB=∠AOC=60°,
∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,
∴OD=1,BD=,即B点的坐标为(﹣1,).
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,分别以ACBC为底边,向△ABC外部作等腰△ADC和△CEB,点M为AB中点,连接MDME分别与ACBC交于点F和点G.
求证四边形MFCG是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了了解学生对四大古典名著(《西游记》《三国演义》《水浒传》《红楼梦》)的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)本次调查一共抽取了_____名学生,扇形统计图中“4部”所在扇形的圆心角为____度;
(2)请补全条形统计图;若该中学有2000名学生,请估计至少阅读1部四大古典名著的学生有多少名?
(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,请用列表法或树状图求他们选中同一名著的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE为底的等腰△CEF,且满足∠B+∠F=180°,则称三角形CEF为四边形ABCD的“伴随三角形”.
(1)如图1,若△CEF是正方形ABCD的“伴随三角形”:
①连接AC,则∠ACF= ;
②若CE=2BC,连接AE交CF于H,求证:H是CF的中点;
(2)如图2,若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,M是线段AE的中点,连接DM、FM,猜想并证明DM与FM的位置与数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AC、BD交于点O,点P、E分别是直线BD、BC上的动点,且PE=PC,过点E作EF∥AC交直线BD于点F
(1)如图1,当∠COD=90°时,△BEF的形状是
(2)如图2,当点P在线段BO上时,求证:OP=BF
(3)当∠COD=60°、CD=3时,请直接写出当△PEF成为直角三角形时的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上,∠OCD=90°,点D在第一象限,OC=6,DC=4,反比例函数的图象经过OD的中点A.
(1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠B=60°,AB=2,把菱形ABCD绕BC的中点E顺时针旋转60°得到菱形A'B'C'D',其中点D的运动路径为,则图中阴影部分的面积为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)【问题发现】
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)【拓展研究】
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)【问题发现】
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com