精英家教网 > 初中数学 > 题目详情
13.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分別为S2=79.6,S2=68.5.由此可知:在该地区乙种水稻更具有推广价值.

分析 首先根据题意,可得甲、乙两种水稻的平均产量相同,然后比较出它们的方差的大小,再根据方差越小,则它与其平均值的离散程度越小,稳定性越好,判断出产量稳定,适合推广的品种为哪种即可.

解答 解:根据题意,可得甲、乙两种水稻的平均产量相同,
∵68.5<79.6,
∴S2<S2
即乙种水稻的产量稳定,
∴产量稳定,适合推广的品种为乙种水稻.
故答案为:乙

点评 此题主要考查了方差的性质和应用,要熟练掌握,解答此题的关键是要明确:方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏--幸运大转盘,其规则如下:
①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、
15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;
②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;
③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;
④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢.
现有甲、乙两位选手进行游戏,请解答以下问题:
(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.
(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗?赢的概率是多少?
(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式中,计算不正确的是(  )
A.($\sqrt{3}$)2=3B.$\sqrt{(-3)^{2}}$=-3C.(a52=a10D.2a2•(-3a3)=-6a5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.对于正数x,规定f(x)=$\frac{x}{1+x}$,例如f(2)=$\frac{2}{1+2}=\frac{2}{3}$,f(3)=$\frac{3}{1+3}=\frac{3}{4}$,f($\frac{1}{2}$)=$\frac{\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}$,f($\frac{1}{3}$)=$\frac{\frac{1}{3}}{1+\frac{1}{3}}=\frac{1}{4}$,计算:f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+f($\frac{1}{2014}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的结果是$\frac{4031}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,某景区内的游览车路线是边长为800米的正方形ABCD,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针(即从A→B→C→D→A的顺序)、2号车逆时针(即从C→B→A→D→C的顺序)沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.设行驶时间为t分.
(1)当0≤t≤8时,若1号车、2号车在左半环线离出口A的路程分别用y1和y2(米)表示,则y1=200t,y2=1600-200t(用含有t的关系式表示);
(2)在(1)的条件下,求出当两车相距的路程是400米时t的值;
(3)①求出t为何值时,1号车第三次恰好经过景点C?
②这一段时间内它与2号车相遇过的次数为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为了迎接春节,某县准备用灯笼美化滨河路,许采用A、B两种不同造型的灯笼共600个.且A型灯笼的数量比B型灯笼的$\frac{2}{3}$多15个.
(1)求A、B两种灯笼各需多少个?
(2)已知A、B型灯笼的单价分别为40元、30元,则这次美化工程需多少费用?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,二次函数y=x2+bx+c的图象交x轴于A(-1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒$\sqrt{2}$个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.

(1)求二次函数的解析式; 
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知多项式5x2ym+1+xy2-3是六次多项式,单项式-7x2ny5-m的次数也是6,则nm=(  )
A.-8B.6C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若单项式2xnym-n与单项式3x3y2n的和是5xny2n,则m与n的值分别是(  )
A.m=3,n=9B.m=9,n=9C.m=3,n=3D.m=9,n=3

查看答案和解析>>

同步练习册答案