精英家教网 > 初中数学 > 题目详情

.一个等边三角形的边长为2,则这个等边三角形的面积为 


 

考点: 等边三角形的性质.

分析: 根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.

解答: 解:∵等边三角形高线即中点,AB=2,

∴BD=CD=1,

在Rt△ABD中,AB=2,BD=1,

∴AD===

∴S△ABC=BC•AD=×2×=

故答案为:


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,DE∥BC,AD:DB=1:2,BC=2,那么DE=(  )

  A.  B.  C.  D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.

(1)求直线CD的解析式;

(2)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


若不等式组有解,则a的取值范围是(  )

  A. a>2 B. a<2 C. a≤2 D. a≥2

 

查看答案和解析>>

科目:初中数学 来源: 题型:


查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.

(1)求点P坐标和b的值;

(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.

①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;

②求出t为多少时,△APQ的面积小于3;

③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


x2﹣8x﹣10=0;

查看答案和解析>>

科目:初中数学 来源: 题型:


如果一个直角三角形的两边长分别为3和4,第三边长为a,那么a2= 

查看答案和解析>>

同步练习册答案