精英家教网 > 初中数学 > 题目详情

【题目】幻方的历史很悠久,传统幻方最早出现在夏禹时代的洛书洛书用今天的数学符号翻译出来,就是一个三阶幻方,如图1所示,图中每个位置上的点数就表示数几,如中间5个点就表示5,每横行、每竖列以及两条对角线上的数的和都相等.

1)把﹣4,﹣3,﹣2,﹣101234填入如图2的方格中,使每横行、每竖列以及两条对角线上的数的和都相等;

2)若把3x83x63x43x23x3x+23x+43x+63x+8填入如图3的方格中,使每横行、每竖列以及两条对角线上的数的和都相等,则每行的和是   (用含x的式子表示);

3)根据上述填数经验请把﹣2,﹣22,﹣23,﹣24,﹣25,﹣26,﹣27,﹣28,﹣29填入如图4的方格中,使每横行、每竖列以及两条对角线上的数的积都相等.

【答案】1)见解析;(2)见解析,9x;(3)见解析.

【解析】

1)根据数据特点,将0放中间,互为相反数的两个数放在0的两侧即可;

2)根据式子特点,将3x放中间,常数项能够抵消的两个式子放在3x的两侧,再算出每行的和;

3)由于,可将﹣25放中间,乘积为210的两个数放两侧.

解:(1)如下图2所示,

2)如下图3所示,

∴每行的和为:3x2+3x+8+3x69x

故答案为:9x

3)如下图4所示,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点AC的坐标分别为(100),(04),点DOA的中点,点PBC上运动,当ODP是腰长为5的等腰三角形时,点P的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国是水资源比较贫乏的国家之一,为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段来达到节约用水的目的,规定如下用水收费标准:每户每月的用水不超过20立方米(20立方米)时,水费按基本价收费:超过20立方米时,不超过的部分仍按基本价收费,超过部分按调节价收费.某户居民今年45月份的用水量和水费如下表所示:

月份

用水量(立方米)

水费()

4

20

42

5

24

56.40

(1)请你算一算该市水费的调节价每立方米多少元?

(2)若该户居民6月份用水量为30立方米,请算一算,6月份水费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从仓库O出发在东西街道上运送水果,规定向东为正方向,一次到达的5个销售地点分别为ABCDE,最后回到仓库O,货车行驶的记录(单位:千米)如下:+2+3,﹣6,﹣1,﹣2+4.请问:

1)请以仓库O为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出ABCDE的位置;

2)试求出该货车共行驶了多少千米?

3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往ABCDE五个地点的水果重量可记为:+50,﹣15+25,﹣10,﹣20,则该货车运送的水果总重量是多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A,B,C,D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?将不完整的条形图和扇形图补充完整

(2)若居民区有8000人,请估计爱吃C D粽的总人数

(3)若有外型完全相同的A,B,C,D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司经营杨梅业务,以3万元/吨的价格买入杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x≥2,单位:吨)之间的函数关系如图所示;B类杨梅深加工后再销售,深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是,平均销售价格为9万元/吨.

(1)A类杨梅的销售量为5吨时,它的平均销售价格是每吨多少万元?

(2)若该公司收购10吨杨梅,其中A类杨梅有4吨,则经营这批杨梅所获得的毛利润(w)为多少万元?(毛利润=销售总收入-经营总成本)

(3)若该公司收购20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元.

①求w关于x的函数关系式;

②若该公司获得了30万元毛利润问:用于直销的A类杨梅有多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知直线x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1△AA1B1,第2△B1A2B2,第3△B2A3B3,…则第n个等边三角形的边长等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学生在一节体育课中,选一组学生进行投篮比赛,每人投10次,汇总投进球数的情况进行统计分析,绘制了如下不完整的统计表和统计图.

次数

10

8

6

5

人数

3

a

2

1

(1)表中a=   

(2)请将条形统计图补充完整;

(3)从小组成员中选一名学生参加校动会投篮比赛,投进10球的成员被选中的概率为多少?

查看答案和解析>>

同步练习册答案