精英家教网 > 初中数学 > 题目详情

【题目】如图,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,则PA的长为(
A.16cm
B.48cm
C.6 cm
D.4 cm

【答案】D
【解析】解:PA切⊙O于A,则OA⊥PA,

又∵AB⊥OP于B,则△PAB∽△POA,

因而

根据PO=8 cm,BO=2 cm,则PB=6cm,

得到

解得PA=4

【考点精析】利用切线的性质定理和相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,三角形ABC的顶点坐标分别为,把三角形ABC向右平移2个单位长度,再向下平移4个单位长度后得到三角形

1)画出三角形ABC和平移后的图形;

2)写出三个顶点的坐标;

3)求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,试说明:∠A+∠B+∠C=180°

方法一: 过点ADEBC. 则(填空)

B=∠ ,∠C=∠

∵ ∠DAB+∠BAC+ ∠CAE=180°

∴∠A+∠B+∠C=180°

方法二: 过BC上任意一点DDEACDFAB分别交ABACEF(补全说理过程 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3 ,AE=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BOC9°,点AOB上,且OA1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;再以A3为圆心,1为半径向右画弧交OB于点A4,得第4条线段A3A4;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n的值是(  )

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:方程组的解x为非正数,y为负数.

(1)a的取值范围;

(2)化简|a3||a2|

(3)a的取值范围中,当a为何整数时,不等式2axx2a1的解为x1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,求的度数. (提示:作).

2)如图2,当点在线段上运动时,,求之间的数量关系,并说明理由.

3)在(2)的条件下,如果点在射线上运动,请你直接写出之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠A=90°AB=AC,点DBC的中点.

(1)如图①,若点EF分别为ABAC上的点,且DEDF,则BEAF的数量关系是   

(2)若点EF分别为ABCA延长线上的点,且DEDF,那么上述结论还成立吗?请利用图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列解题过程,然后解答后面两个问题.

解方程:|x-3|=2

解:当x-3≥0时,原方程可化为x-3=2,解得x=5

x-30时,原方程可化为x-3=-2,解得x=1

所以原方程的解是x=5x=1

1)解方程:|3x-2|-4=0

2)解关于x的方程:|x-2|=b+1

查看答案和解析>>

同步练习册答案