精英家教网 > 初中数学 > 题目详情

【题目】两个边长分别为的正方形如图放置(图1),其未叠合部分(阴影)面积为;若再在图1中大正方形的右下角摆放一个边长为的小正方形(如图2),两个小正方形叠合部分(阴影)面积为

1)用含的代数式分别表示

2)若,求的值;

3)当时,求出图3中阴影部分的面积

【答案】1S1a2b2S22b2ab234316

【解析】

1)由图中正方形和长方形的面积关系,可得答案;

2)根据S1S2a2b22b2aba2b2ab,将ab10ab22代入进行计算即可;

3)根据S3a2b2baba2a2b2ab)和S1S2a2b2ab32,可求得图3中阴影部分的面积S3

1)由图可得,S1a2b2S22b2ab

2)∵ab10ab22

S2S2a2b22b2ab

a2b2ab

=(ab23ab

1003×22

34

S1S2的值为34

3)由图可得:

S3a2b2baba2a2b2ab

S1S2a2b2ab32

S3×3216

∴图3中阴影部分的面积S316

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图 1,将两个完全相同的三角形纸片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如图2,固定△ABC,使△DEC 绕点 C 旋转,当点 D 恰好落 AB 边上时,

①填空:线段 DE AC 的位置关系是

②设△BDC 的面积为 S1,△AEC 的面积为 S2,求证:S1=S2

2)当△DEC 绕点 C 旋转到如图 3 所示的位置时,小明猜想(1 S1 S2 的数量关系仍然成立,并尝试分别作出了△BDC和△AECBCCE 边上的高,请你证明小明的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.

1)分别求出这两个函数的解析式;

2)求的面积;

3)点轴上,且是等腰三角形,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.

【答案】 .

【解析】试题分析:

根据题意列表如下由表可以得到所有的等可能结果再求出所有结果中两次所摸到小球的数字之和为4的次数即可计算得到所求概率.

试题解析

列表如下:

1

2

3

4

1

(1,1)

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,2)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,3)

(3,4)

4

(4,1)

(4,2)

(4,3)

(4,4)

由表可知,共有16种等可能事件,其中两次摸到的小球数字之和等于4的有(3,1)、(2,2)和(1,3),共计3

P(两次摸到小球的数字之和等于4=.

型】解答
束】
23

【题目】小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtACB中,∠ACB=90°,ABC的角平分线AD、BE相交于点P,过PPFADBC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;BF=BA;PH=PD;④连接CP,CP平分∠ACB,其中正确的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90,BC=4,AC=3,线段PQBCQ(如图,此时点Q与点B重合)PQ=AB,当点P沿PBB滑动时,点Q相应的从B沿BCC滑动,始终保持PQ=AB不变,当ABCPBQ全等时,PB的长度等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.

(1)求证:ABM≌△BCN;

(2)求APN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠B=90°, AB//CD,MBC边上的一点,AM平分∠BADDM平分∠ADC,

求证:(1) AMDM;

(2) MBC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN

如图2,在梯形ABCD中,BCAD,AB=BC=CD, M、N分别在AD、CD上,若∠MBN=ABC ,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.

如图3,在四边形ABCD中,AB=BC,ABC+ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

同步练习册答案