【题目】如图,在正方形中,,、是对角线上的两个动点(点靠近点),且,是正方形四边上的任意一点.若是等边三角形,则 AE的长为______ .
【答案】或
【解析】
当点P在AD上时,过点PH⊥EF于H,由等边三角形的性质可求PH=,由正方形的性质可求∠DAC=45°,AC=,可得AH=PH,可求AE=,,同理可求点P在AB,CD,BC上时,AE的值,即可求解.
如图,当点P在AD上,且点E在点F上方时,过点PH⊥EF于H,
∵△PEF是等边三角形,PH⊥EF,
∴∠PEF=60°,PE=PF=EF=2,EH=FH=1,
∴PH=,
∵四边形ABCD是正方形,AB=4,
∴∠DAC=45°,AC=,
∵PH⊥AC,
∴∠APH=∠PAH=45°,
∴AH=PH=,
∴AE=,
同理可得:当点P在AB上时,AE=,
同理可得:当点P在CD或BC上时,AE=,
故答案为:或.
科目:初中数学 来源: 题型:
【题目】一次函数的图像与双曲线相交于和两点,与轴相交于点,过点作轴,垂足为点.
(1)求一次函数的解析式;
(2)根据图像直接写出不等式的解集;
(3)的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连结DP并延长交AB于点E.
(1)求证:DE为半圆O的切线;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】疫情期间某校学生积极观看网络直播课程,为了了解全校500名学生观看网络直播课程的情况,随机抽取50名学生,对他们观看网络直播课程的节数进行收集,并对数据进行了整理、描述和分析,下面给出了部分信息.
观看直播课节数的频数分布表
节数x | 频数 | 频率 |
8 | 0.16 | |
10 | 0.20 | |
16 | ||
0.24 | ||
4 | 0.08 | |
总数 | 50 | 1 |
其中,节数在这一组的数据是:
20 20 21 22 23 23 23 23 25 26 26 26 27 28 28 29
请根据所给信息,解答下列问题:
(1)__________,__________
(2)请补全频数分布直方图;
(3)随机抽取的50名学生观看直播课节数的中位数是___________;
(4)请估计该校学生中观看网络直播课节数不低于30次的约有__________人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等边三角形中,D为边上一点,满足,连接,以点A为中心,将射线顺时针旋转60°,与的外角平分线交于点E.
(1)依题意补全图1;
(2)求证:;
(3)若点B关于直线的对称点为F,连接.
①求证:;
②若成立,直接写出的度数为_________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与函数的图象交于点,与轴交于点.
(1)求,的值;
(2)过动点作平行于轴的直线,交函数的图象于点,交直线于点.
①当时,求线段的长;
②若,结合函数的图象,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年新型冠状病毒肆虐全球,某地区有一外来无症状感染者,没有有效隔离,经过两轮传染后共有121人患了流感.
(1)每轮传染中平均一个人传染了多少个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市政府为了扶贫,鼓励当地农民养殖小龙虾,如图:张叔叔顺着圩梗AN、AM(AN=3m,AM=10m,∠MAN=45°),用8m长的渔网搭建了一个养殖水域(即四边形ABCD),圩梗边不需要渔网,AB∥CD,∠C=90°.设BC=xm,四边形ABCD面积为S(m2).
(1)求出S关于x的函数表达式及x的取值范围;
(2)x为何值时,围成的养殖水域面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:
(1)本次抽样调查了多少户贫困户?
(2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?
(3)2020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com