房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了 500 名学生;
(2)补全两幅统计图;
(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)根据个人自学后老师点拨的人数和所占的百分比求出总人数即可;
(2)用小组合作学习的人数除以总人数得出小组合作学习所占的百分比,用总人数减去其他学习方式的人数求出教师传授的人数,再除以总人数,求出教师传授的人数所占的百分比,从而补全统计图;
(3)用该校的总人数乘以“小组合作学习”所占的百分比即可得出答案.
【解答】解:(1)这次抽样调查中,共调查的学生数是: =500(名);
故答案为:500.
(2)小组合作学习所占的百分比是:×100%=30%,
教师传授的人数是:500﹣300﹣150=50(人),
教师传授所占的百分比是:×100%=10%;
补图如下:
(3)根据题意得:
1000×30%=300(人).
答:该校1000名学生中大约有300人选择“小组合作学习”.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
科目:初中数学 来源: 题型:
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:
说明:
方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点
纸片利用率=×100%
发现:
(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
说明:方案三中的每条边均过其中两个正方形的顶点.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.
(1)求证:CF为⊙O的切线;
(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com