精英家教网 > 初中数学 > 题目详情
11.如图,AB半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则tanα的值为$\frac{3}{2}$.

分析 首先连接BC,由AB半圆的直径,可得∠C=90°,然后由勾股定理求得BC的长,又由OD⊥AC,利用垂径定理可求得CE的长,继而求得答案.

解答 解:连接BC,
∵AB半圆的直径,OA=5,
∴∠C=90°,AB=2OA=10,
∵弦AC=8,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=6,
∵OD⊥AC,
∴CE=$\frac{1}{2}$AC=4,
∴tanα=$\frac{BC}{CE}$=$\frac{6}{4}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 此题考查了圆周角定理、垂径定理、勾股定理以及三角函数等知识.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则这个几何体是(  )
A.圆柱B.C.圆锥D.棱柱

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,正方形ABCD中,点A在双曲线y=$\frac{k}{x}$(x>0)上,点C、D在y轴上,已知点B(2,3).
(1)求k值;
(2)在①的基础上,将正方形ABCD平移,使点A、C恰好落在此双曲线y=$\frac{k}{x}$(x>0)上,如图2,求此时点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在比例函数y=$\frac{6}{x}$的图象上有一点D(2,3),点P是该反比例函数图象上的另一点,若OD=OP,则点P的坐标为(-2,-3)或(3,2)或(-3,-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,直线y=-$\frac{4}{3}$x+4与坐标轴分别交于点M、N.
(1)求M,N两点的坐标;
(2)若点P在坐标轴上,且P到直线y=-$\frac{4}{3}$x+4的距离为$\frac{12}{5}$,求符合条件的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,d)、C(-3,2).
(1)求d的值;
(2)将△ABC沿x轴的正方向平移a个单位,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G.作C′M⊥x轴于M.P是线段B′C′上的一点,若△PMC′和△PBB′面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某城市搞亮化工程,如图,在甲楼底部,乙楼顶部分别安装一盏射灯.已知A灯恰好照到B灯,B灯恰好照到甲楼的顶部,如果两盏灯的光线与水平线的夹角相等,那么能否说甲楼的高度是乙楼的2倍?说说你的看法.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在进行爆破作业时,为了保证安全,点燃导火索的人要在爆破前跑到爆破地点70m以外的安全地方去,已知导火索燃烧的速度是0.8cm/s,人离开的速度是5m/s,则导火索至少要11.2cm才能保证人的安全.

查看答案和解析>>

同步练习册答案