【题目】如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.
【答案】(47,)
【解析】
根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.
解:∵OA1=1,
∴OC1=1,
∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,
∴C1的纵坐标为:sim60°. OC1=,横坐标为cos60°. OC1=,
∴C1,
∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,
∴A1C2=2,A2C3=4,A3C4=8,…
∴C2的纵坐标为:sin60°A1C2=,代入y求得横坐标为2,
∴C2(2,),
∴C3的纵坐标为:sin60°A2C3=,代入y求得横坐标为5,
∴C3(5,),
∴C4(11,),C5(23,),
∴C6(47,);
故答案为(47,).
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣2x2﹣4x+6.
(1)求出函数的顶点坐标、对称轴以及描述该函数的增减性.
(2)求抛物线与x轴交点和y轴交点坐标;并画出它的大致图象.
(3)当﹣2<x<4时.求函数y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次函数(m,n为常数且m≠0)
(1)若n=0,请判断该函数的图像与x轴的交点个数,并说明理由;
(2)若点A(n+5,n)在该函数图像上,试探索m,n满足的条件;
(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且p<q<r,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC,MN与边AD交于点E.
(1)求证:AM=AN;
(2)如果∠CAD=2∠NAD,求证:AM2=ACAE;
(3)MN和AC相交于O点,若BM=1,AB=3,试猜想线段OM,ON的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.
(1)求A、B两点的坐标和反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如下所示,下列5个结论:①;②;③;④;⑤(的实数),其中正确的结论有几个?
A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE=2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com