【题目】点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.
(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.
(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.
【答案】(1)BD=AF,理由见解析;(2)AB=AF+BF′,理由见解析.
【解析】
(1)证明△BCD≌△ACF,即可得出结论;(2)证明△F′CB≌△DCA,得到BF′=DA,再由(1)即可得到结论.
(1)BD=AF,
理由:∵△ABC和△DCF都是等边三角形,
∴BC=AC,CD=CF,∠ACB=∠DCF=60°,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
,
∴△BCD≌△ACF(SAS),
∴BD=AF;
(2)AB=AF+BF′,
理由:∵△ABC和△DCF都是等边三角形,
∴BC=AC,CF′=CD,∠F′CD=∠BCA=60°,
∴∠F′CB=∠DCA,
在△F′CB和△DCA中,
,
∴△F′CB≌△DCA(SAS),
∴BF′=DA,
由(1)知,BD=AF,
∵AB=BD+AD,
∴AB=AF+BF′.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.
甲射靶成绩的条形统计图 | 乙射靶成绩的折线统计图 |
()请你根据图中的数据填写下表:
平均数 | 众数 | 方差 | |
甲 | __________ | ||
乙 | __________ | __________ |
()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形的边在轴上,点坐标为边、的长分别为3、8,是的中点,反比例函数的图象经过点,与边交于点.
(1)求的值及经过、两点的一次函数的表达式;
(2)若轴上有一点,使的值最小,试求出点的坐标;
(3)在(2)的条件下,连接、、,在直线上找一点,使得直接写出符合条件的点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=6厘米,AD=8厘米.延长BC到点E,使CE=3厘米,连接DE.动点P从B点出发,以2厘米/秒的速度向终点C匀速运动,连接DP.设运动时间为t秒,解答下列问题:
(1)当t为何值时,△PCD为等腰直角三角形?
(2)设△PCD的面积为S(平方厘米),试确定S与t的关系式;
(3)当t为何值时,△PCD的面积为长方形ABCD面积的?
(4)若动点P从点B出发,以2厘米/秒的速度沿BC﹣CD﹣DA向终点A运动,是否存在某一时刻t,使△ABP和△DCE全等?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.
(1)求证:△ABM≌△CDN;
(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com