精英家教网 > 初中数学 > 题目详情

【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.

1)求每吨水的政府补贴优惠价和市场价分别是多少?

2)设每月用水量为x吨(x>14),应交水费为y元,请写出yx之间的函数关系式;

【答案】(1)每吨水的政府补贴优惠价元,市场调节价为元;(2

【解析】

1)设每吨水的政府补贴优惠价为元,市场调节价为元,列出相应二元一次方程组,求解出m,n的值即可.

2)根据用水量和水费的关系,写出yx之间的函数关系式.

解:(1)设每吨水的政府补贴优惠价为元,市场调节价为元.

解得:

答:每吨水的政府补贴优惠价元,市场调节价为元.

2)当时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m﹣1,1+m,﹣2m]的函数的一些结论:①当m=3时,函数图象的顶点坐标是(﹣1,﹣8);②当m>1时,函数图象截x轴所得的线段长度大于3;③当m<0时,函数在x>时,yx的增大而减小;④不论m取何值,函数图象经过两个定点.其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点为坐标原点,的顶点的坐标分别为,并且满足

1)求两点的坐标.

2)把沿着轴折叠得到,动点从点出发沿射线以每秒个单位的速度运动.设点的运动时间为秒,的面积为,请用含有的式子表示

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)

根据所给信息,解答以下问题:

(1)在扇形统计图中,C对应的扇形的圆心角是   度;

(2)补全条形统计图;

(3)所抽取学生的足球运球测试成绩的中位数会落在   等级;

(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边中,点分别在边上.

1)如图,若,以为边作等边于点,连接

求证:①

平分

2)如图,若,作的延长线于点,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.

(1)证明:PC=PE;

(2)求CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象交x轴于点B60),交正比例函数的图象于点A,且点A的横坐标为4SABO12.求一次函数和正比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.

乙同学:我知道边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…

丙同学:我发现边数为6时,它也不一定是正六边形.如图2,ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.

(1)如图1,若圆内接五边形ABCDE的各内角均相等,则ABC= °,并简要说明圆内接五边形ABCDE为正五边形的理由;

(2)如图2,请证明丙同学构造的六边形各内角相等;

(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P“d定义如下:若点Q为圆上任意一点,线段PQ长度的最大值与最小值之差即为点P“d,记为dP.特别的,当点P,Q重合时,线段PQ的长度为0.当⊙O的半径为2时:

(1)若点C(﹣,0),D(3,4),则dc=   ,dp=   

(2)若在直线y=2x+2上存在点P,使得dP=2,求出点P的横坐标;

(3)直线y=﹣x+b(b>0)与x轴,y轴分别交于点A,B.若线段AB上存在点P,使得2≤dP<3,请你直接写出b的取值范围.

查看答案和解析>>

同步练习册答案