精英家教网 > 初中数学 > 题目详情

【题目】如图1是甲、乙两个圆柱形水槽的轴截面示意图.乙槽中有一圆柱形铁块放在其中(圆柱形铁块的下底面完全落在水槽底面上),现将甲槽中的水匀速注人乙槽.甲、乙两个水槽中水的深度与注水时间(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:

1)图2中折线表示 槽中的水的深度与注水时间的关系,线段表示 槽中的水的深度与注水时间的关系(”),点的纵坐标表示的实际意义是

2)当时,分别求出之间的函数关系式;

3)注水多长时间时,甲、乙两个水槽中的水深度相同?

4)若乙槽底面积为平方厘米(壁厚不计) ,求乙槽中铁块的体积.

【答案】1)乙;甲;乙槽中圆柱形铁块的高度是14厘米;(2y=-2x+12y=3x+2;(3)注水2分钟;(484cm3

【解析】

1)根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;

2)根据题意分别求出两个水槽中yx的函数关系式即可;

3)根据(2)中yx的函数关系式,令y相等即可得到水位相等的时间;

4)用水槽的体积减去水槽中水的体积即可得到铁块的体积;

解:(1)由题意可得:

∵乙槽中含有铁块,

∴乙槽中水深不是匀速增长,

∴折线表示乙槽中水深与注水时间的关系,

线段DE表示甲槽中水深与注水时间的关系,

由点B的坐标可得:

B的纵坐标表示的实际意义是:乙槽中圆柱形铁块的高度是14厘米;

故答案为:乙;甲;乙槽中圆柱形铁块的高度是14厘米;

2)设线段ABDE的解析式分别为:y=k1x+b1y=k2x+b2
AB经过点(02)和(414),DE经过(012)和(60),

解得:

解得:

∴当时, y=-2x+12y=3x+2
3)由(2)可知:

y=y

3x+2=-2x+12
解得x=2
∴当2分钟时两个水槽水面一样高.

4)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm
当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm
设铁块的底面积为acm2
则乙水槽中不放铁块的体积为:2.5×36cm3
放了铁块的体积为36-acm3
1×3×36-a=1×2.5×36
解得a=6
∴铁块的体积为:6×14=84cm3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

85

80

75

80

90

73

83

79

90

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:

为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋中装有4个只有颜色不同的球,其中1个黄球、1个蓝球、2个红球.

(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);

(2)现再将n个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,BC=AC,以BC为直径的O与边AB、AC分别交于点D、E,DFAC于点F.

(1)求证:点D是AB的中点;

(2)判断DF与O的位置关系,并证明你的结论;

(3)若O的半径为10,sinB=,求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形

(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CDBC,AD之间的数量关系

猜想结论:   (要求用文字语言叙述)

写出证明过程(利用图1,写出已知、求证、证明)

(性质应用)

①初中学过的下列四边形中哪些是圆外切四边形   (填序号)

A:平行四边形:B:菱形:C:矩形;D:正方形

②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是   

③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点EBC边上的动点,当以CE为半径的⊙C与边AD有两个交点时,半径CE的取值范围是(  )

A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A是半径为6cm的⊙O上的定点,动点PA出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s);

(1)当t=6s时,∠POA的度数是________;

(2)当t为多少时,∠POA=120°;

(3)如果点BOA延长线上的一点,且AB=AO,问t为多少时,POB为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB6BC8,点EBC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____

查看答案和解析>>

同步练习册答案