精英家教网 > 初中数学 > 题目详情

【题目】在图123中,已知,点为线段上的动点,连接,以为边向上作菱形,且

1)如图1,当点与点重合时,________°

2)如图2,连接

①填空:_________(填“>”“<”“=”);

②求证:点的平分线上;

3)如图3,连接,并延长的延长线于点,当四边形是平行四边形时,求的值.

【答案】160°;(2)① =,②见解析;(33

【解析】

1)根据菱形的性质计算;

2)①证明,根据角的运算解答;

②作的延长线于,证明,根据全等三角形的性质得到,根据角平分线的判定定理证明结论;

3)根据直角三角形的性质得到,证明四边形为菱形,根据菱形的性质计算,得到答案.

解:(1四边形是菱形,

故答案为

2)①四边形是平行四边形,

四边形是菱形,

故答案为

②作的延长线于

,又

为等边三角形,

中,

,又

的平分线上;

3四边形是菱形,

四边形为平行四边形,

,又

四边形为平行四边形,

四边形为平行四边形,

平行四边形为菱形,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明同学在数学实践活动课中测景路灯的高度,如图,已知她的目高AB1.5米,街为站在A处看路灯顶端P的仰角为30°.再往前走2米站在C处,看路灯顶端P的仰角为45°,求路灯顶端P到地面的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+mx+nx轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A10),C02).

1)求抛物线的表达式;

2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E时线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是对角线BD上的一点,过点CCFDB,且CF=DE,连接AEBFEF

1)求证:△ADE≌△BCF

2)若∠ABE+BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.

1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)

在市中心某个居民区以家庭为单位随机抽取;在全市医务工作者中以家庭为单位随机抽取;在全市常住人口中以家庭为单位随机抽取.

2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:

m= n=

补全条形统计图;

扇形统计图中扇形C的圆心角度数是

家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小婷在放学路上,看到隧道上方有一块宣传中国﹣南亚博览会的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019423日是第二十四个世界读书日.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:

1)求本次比赛获奖的总人数,并补全条形统计图;

2)求扇形统计图中二等奖所对应扇形的圆心角度数;

3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加世界读书日宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABMN中,AN=1,点CMN的中点,分別连接ACBC,且BC=2,点DAC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DFEF.当EFAC时,AE的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年某企业按餐厨垃圾处理费25/吨,建筑垃圾处理费16/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100/吨,建筑垃圾处理费30/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

查看答案和解析>>

同步练习册答案